Advanced Topics in Communication Networks

Programming Network Data Planes

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zirich
Sep 20 2018

Materials inspired from Jennifer Rexford, Changhoon Kim, and p4.org

http://p4.org
https://nsg.ee.ethz.ch

Networking is on the verge of a paradigm shift
towards deep programmability

Network programmability is attracting

tremendous industry interest (and money)

VMware Acquires Once-Secretive Start-
Up Nicira for $1.26 Billion

JULY 23, 2012 AT 1:25 PM PT W Tweet 8+ m Share @ Print

VMware, the software company

best known for its virtualization

technology that forms the

backbones of so-called cloud

computing today, said it will pay

$1.26 billion for Nicira, a I
networking start-up that has

sought to do to networks what

VMware has done to computers.

The news comes on the same day
that VMware was to report I l I ‘ I l a
quarterly earnings. And while I

don’t usually cover VMware’s

earnings, I may as well mention the results: The company reported revenue for the quarter
ended June rose to $1.12 billion, while earnings on a per-share basis were 68 cents.
Analysts had been expecting sales of $1.12 billion and earnings of 66 cents.

Nicira had been running in stealth mode for quite awhile; I got to reveal its plans to the
world last February.

The deal amounts to a nice payoff for Nicira’s investors including Andreessen Horowitz,
Lightspeed Venture Partners and NEA, as well as VMware founder Diane Greene and
venture capitalist Andy Rachleff.

With $600M Invested in SDN Startups, the Ecosystem Builds
00006

Scott Raynovich, June 10, 2014

Ty

%y,
ST
LR

e im0 R

More than $600 million has been invested in at least two dozen software-

defined networking (SDN) startups so far, according to Rayno Report Related Articles
research. You can expect that to continue to climb. With the SDN ecosystem How to Effectively Embed SDN in the
starting to take hold with a broad range of alliances and distribution Enterprise

partnerships, we're just getting started. NFV and SDN: What's the Difference

Two Years Later?
The Arista IPO will help build visibility for next-generation, software-driven

networking. But Arista is selling its own hardware and is not an SDN pure-
play. A new line of SDN startups, with a more radical approach to software-
based networking, is building momentum. These newer SDN startups are
just getting their gear into customers’ hands and starting to build sales
channels, so you can expect a long revenue ramp.

sFlow Creator Peter Phaal On Taming
The Wilds Of SDN & Virtual
Networking

Featured Article: Bringing Data-Driven
SDN to the Network Edge

NFV Delivers Pervasive Intelligence

This excitement is boosting startup valuations, according to Rayno Report for MNOs

research. There are now at least ten SDN startups with valuations over $100

million. As | reported in April, a recent investment in Cumulus Networks

pushed up the valuation of the private company north of $300 million, according to industry sources. Big Switch, which
did a deal in 2012 valuing it near $170 million, took money from Intel in 2013, most likely boosting its valuation to over
$200 million, according to several sources.

00 EJ This startup may have built th x Laurent

& C 1) | & Secure | https://www.infoworld.com/article/3084324/networking/this-startup-may-have-built-the-worlds-fastest-networking-switch-chip.html w @

Software Development ® Cloud Computing ® Machine Learning ® Analytics ® Insider Exclusives *® Resources & White Papers ® Job Search O @ T Q

= InfoWorld Signin | Register

FROM IDG

Home > Networking

This startup may have built the world's fastest
networking switch chip
Barefoot Networks is also making its switch platform completely programmable

O060ODOGO OO0

By Stephen Lawson

Senior U.S. Correspondent, IDG News Service

MORE LIKE THIS

. Internet2 at 20: Alive and
; ﬁ, kicking
>
> Identifying the security
ﬁ pitfalls in SDN
. L
|

Lessons learned: Tribune
Media rebuilds IT from the
ground up
_ VIDEO
L EXpO
Highlights from Interop
4 2015

Barefoot Networks

Networking has undergone radical changes in the past few years, and two
startup launches this week show the revolution isn't over yet.

Barefoot Networks is making what it calls a fully programmable switch
platform. It came out of stealth mode on Tuesday, the same day 128
Technology emerged claiming a new approach to routing. Both say
they're rethinking principles that haven't changed since the 1990s.

Network programmability is getting traction

in many academic communities

| Distributed
Networking Systems Algorithms
SIGCOMM OSDI PODC
NSDI SOSP DISC
HotNets SOCC
CoNEXT

Security

CGCS
NDSS

Usenix
Security

S&P

PL

PLDI

POPL
OOPSLA

>7.7k

of citations of the original

OpenFlow paper (¥) in ~10 years

(*) https://dl.acm.org/citation.cfm?id=1355746

Why? It's really a story in 3 stages

The network management crisis

Networks are large distributed systems
running a set of distributed algorithms

Control plane

Data pl
ata plane o
- V/ S
: 74 m s Control plane »
v Control plane
Control plane < P Data plane .
Data pIane | /) :

s DRl IR Control plane
“ Data plane
... Control plane
Data plane
/ ¥ | q

IP router el

IS
v,
Ty
Y,
Taiga

Control plane

Data plane N § e

o

7

(

These algorithms produce the forwarding state
which drives IP traffic to its destination

Forwarding state

dest next-hop
Google 0
|
0 Yahoo!]
Control plane 1 Skype O

Data plane

2 ETHZ 2

Operators adapt their network forwarding behavior
by configuring each network device individually

Given @’\, "@, and @\,
== L —
an existing network behavior a desired network behavior

induced by a low-level configuration C

Adapt C so that the network follows the new behavior

Given @’\, *@, and @\,
== L —
an existing network behavior a desired network behavior

induced by a low-level configuration C

Adapt C so that the network follows the new behavior

Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco I0S

!
ip multicast-routing
|

interface Loopbacke
ip address 120.1.7.7 255.255.255.255

ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1lQ 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
|

router bgp 700
neighbor 125.1.17.1 remote-as 100
|

address-family ipv4

redistribute ospf 1 match internal external 1 external 2

neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2

Juniper JunOS

interfaces {

s0-0/0/0 {
unit @ {
family inet {
address 10.12.1.2/24;

}
family mpls;
}
}
ge-0/1/0 {
vlan-tagging;
unit @ {
vlan-id 100;
family inet {
address 10.108.1.1/24;
}
family mpls;
}
unit 1 {
vlan-id 200;
family inet {
address 10.208.1.1/24;
}
}
}

protocols {
mpls {
interface all;
}

bep {

A single mistyped line is enough
to bring down the entire network

Anything else than 700 creates blackholes

redistribute bgp 700 subnets

It's not only about the problem of configuring...
the level of complexity in networks is staggering

The Data Plane The Control Plane

Source Mark Handley. Re-thinking the control architecture of the internet.
Keynote talk. REARCH. December 20009.

Complexity + Low-level Management = Problems

November 2017

e ® () Widespread impact caused by x Laurent
C 1 | @ Secure | https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/ w ® 9 :
Y Bookmarks ¥) 9O I Bl S % 5 Other Bookmarks

ORACLE + Dyn Products Explore Why Dyn Company Support SIGN IN Q

Widespread impact caused
by Level 3 BGP route leak

Research // Nov 7, 2017 // Doug Madory

For a little more than 90 minutes yesterday, internet service for millions of users in the U.S. and

around the world slowed to a crawl. Was this widespread service degradation caused by the e

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak.. N S time. The cause was yet another BGP routing leak — a router

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/

For a little more than 90 minutes [...],

Internet service for millions of users in the U.S.
and around the world slowed to a crawl.

The cause was yet another BGP routing leak,
a router misconfiguration directing Internet traffic
from its intended path to somewhere else.

August 2017

Google routing blunder sent .- x

= C (@ @& Secure \ https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

Login | Signup Forums Serverless | M® | CLL | Events | Whitepapers | The Next Platform

The AR Register

Biting the hand that feeds IT

A« DATA CENTRE SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE EMERGENT TECH BOOTNOTES LECTURES Q

Data Centre » Networks

Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 40(Q) SHARE Y

Most read

Helicopter crashes after
manoeuvres to ‘avoid...
DJI Phantom drone'

That terrifying 'unfixable'
Microsoft Skype security
flaw: THE TRUTH

Last Friday, someone in Google fat-thumbed a border gateway protocol

(BGP) advertisement and sent Japanese Internet traffic into a black hole.
Stephen Elop and the fall

The trouble began when The Chocolate Factory “leaked” a big route of Nokia revisited
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated

as transit.

BBC presenter loses
appeal, must pay £420k
in IR35 crackdown

Since Google doesn't provide transit services, as BGP Mon explains, that
traffic either filled a link beyond its capacity, or hit an access control list, Microsoft's Windows 10

and disappeared. P 'l | Workstation adds killer
feature: No Candy Crush

The outage in Japan only lasted a couple of hours, but was so severe
that Japan Times reports the country's Internal Affairs and
Communications ministries want carriers to report on what went wrong.

BGP Mon dissects what went wrong here, reporting that more than

The Register uses cookies. Find out more. Close

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

Someone in Google fat-thumbed a
Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

[...] the result of which was traffic from Japanese giants
like NTT and KDDI was sent to Google

on the expectation it would be treated as transit.

The outage in Japan only lasted a couple of hours,
but was so severe that [...] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.

Traders work on the floor of the New York Stock Exchange (NYSE) in July 2015.
(Photo by Spencer Platt/Getty Images)

UPDATED: “Configuration Issue”
Halts Trading on NYSE

The article has been updated with the time trading resumed.

A second update identified the cause of the outage as a
“configuration issue.”

A third update added information about a software
update that created the configuration issue.

NYSE network operators identified
the culprit of the 3.5 hour outage,
blaming the incident on a
“network configuration issue’

Forbes

The Little Black Book of Billionaire Secrets

6 PM 11,261 VIEWS

United Airlines Blames Router for Grounded Flights

_ Alexandra Talty, contrizuTor
S ‘ :
‘3 FOLLOWONFORBES(110) W X\ M & =

Opinions expressed by Forbes Contributors are their own.

FULL BIO v

After a computer problem caused nearly two hours of grounded flights for United Airlines this morning and ongoing
delays throughout the day, the airline announced the culprit: a faulty router.

Spokeswoman Jennifer Dohm said that the router problem caused “degraded network connectivity,” which affected
various applications.

A computer glitch in the airline’s reservations system caused the Federal Aviation Administration to impose a
groundstop at 8:26 a.m. E.T. Planes that were in the air continued to operate, but all planes on the ground were held.
There were reports of agents writing tickets by hand. The ground stop was lifted around 9:47 a.m. ET.

http://bit.ly/2sBJ2jf

“Human factors are responsible

for 50% to 80% of network outages’

Juniper Networks, What’s Behind Network Downtime?, 2008

Ironically, this means that data networks work better
during week-ends...

Monday —

Tuesday —

Wednesday -

Thursday -

Friday -

Saturday -

Sunday -

| | | |

0 5 10 15 20

% of route leaks

'I'ie_lmgmcl Under
Grisis
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

OF THE NATNIONAL ACADEMIES

National Research Council. The Internet Under Crisis Conditions: Learning from September 11

'I‘Ile_lntgmel Under
I
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

The_lntgmet Under
GIisIS
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates
suggest that
The Internet was more stable

than normal on Sept 11

Information suggests that
operators were watching the news
instead of making changes

to their infrastucture

“Cost per network outage

can be as high as 750 000%”

Smart Management for Robust Carrier Network Health

and Reduced TCOI!, NANOG54, 2012

Solving this problem is hard because
network devices are completely locked down

closed software

closed hardware

Cisco™ device

Software-Defined Networking

What is SDN and how does it help?

 SDN is a new approach to networking
— Not about “architecture”: IP, TCP, etc.

— But about design of network control (routing, TE,...

'

 SDN is predicated around two simple concepts

— Separates the control-plane from the data-plane
— Provides open API to directly access the data-plane

* While SDN doesn’t do much, it enables a /ot

Rethinking the “Division of Labor”

Traditional Computer Networks

Data plane: "
Packet
processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks

Control plane:
Distributed algorithms,
establish state in devices

—
—
—_—
—

Track topology changes, compute
routes, install forwarding rules

Software Defined Networking (SDN)

Logically-centralized control

SDN advantages

Simpler management

— No need to “invert” control-plane operations

Faster pace of innovation

— Less dependence on vendors and standards

Easier interoperability

— Compatibility only in “wire” protocols

n

Simpler, cheaper equipment

— Minimal software

OpenFlow Networks

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

pht —> g?
g

src:1.2.1.1, dst:3.4.5.6

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

pht —> g?
g

src:1.2.1.1, dst:3.4.5.6

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

src:1.®3.4.5.6 Dy

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

pht —> g?
g

src:1.2.1.1, dst:3.4.5.6

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

pht —> g?
g

src:1.2.1.1, dst:3.4.5.6

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

src:1.®3.4.5.6 Dy

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller

OpenFlow switches can emulate
different kinds of boxes

* Router * Firewall
— Match: longest — Match: IP addresses and
destination IP prefix TCP/UDP port numbers
— Action: forward out a — Action: permit or deny
link o NAT
* Switch — Match: IP address and
— Match: destination MAC port
address — Action: rewrite address

— Action: forward or flood and port

Controller: Programmability

4 A

SDN/OpenFlow

controller

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets

Controller: Programmability

4 \

while (true):
read event e:
if e == switch up:

- update topology
- populates switch table

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets

Example OpenFlow Applications

Dynamic access control

Seamless mobility/migration

Server load balancing

Network virtualization

Using multiple wireless access points
Energy-efficient networking
Adaptive traffic monitoring

Denial-of-Service attack detection

E.g.: Dynamic Access Control

* |nspect first packet of a connection
* Consult the access control policy
* |nstall rules to block or route traffic

=

E.g.: Seamless Mobility/Migration

e See host send traffic at new location
* Modify rules to reroute the traffic

Bafln
BEaE8

E.g.: Server Load Balancing

* Pre-install load-balancing policy
. e Split traffic based on source IP

Challenges

Heterogeneous Switches

Number of packet-handling rules

Range of matches and actions

Multi-stage pipeline of packet processing
Offload some control-plane functionality (?)

access

control B |ook-up N |ook-up

Controller Delay and Overhead

* Controller is much slower than the switch
* Processing packets leads to delay and overhead

* Need to keep most packets in the “fast path”

H BN
packets -q

Distributed Controller

Controller
Application

For scalability
and reliability

Partition and replicate state

Controller
Application

Testing and Debugging

* OpenFlow makes programming possible
— Network-wide view at controller

— Direct control over data plane

* Plenty of room for bugs

— Still a complex, distributed system

* Need for testing techniques
— Controller applications
— Controller and switches
— Rules installed in the switches

Programming Abstractions

* OpenFlow is a low-level API

— Thin veneer on the underlying hardware
 Makes network programming controller

possible, not easy! [:]l
H’

/

== = =
Switches

Example: Simple Repeater

Simple Repeater

def switch_join(switch):
Repeat Port 1 to Port 2
pl = {in_port:1}
al = [forward(2)]
install(switch, pl, DEFAULT, al)

Repeat Port 2 to Port 1

p2 = {in_port:2}

a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

When a switch joins the network, install two forwarding rules.

Example: Web Traffic Monitor

Monitor “port 80" traffic

def switch_join(switch):
Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def stats_in(switch, p, bytes, ..)
print bytes
sleep(30)

a—
query_stats(switch, p) y iil

N

4
_/:',>

Web traffic

When a switch joins the network, install one monitoring rule.

Composition: Repeater + Monitor

Repeater + Monitor

-

def switch_join(switch):
patl = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, patl, DEFAULT, None, [forward(2)])
install(switch, pat2web, , None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

\

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

J

Must think about both tasks at the same time.

Asynchrony: Switch-Controller Delays

« Common OpenFlow programming idiom
— First packet of a flow goes to the controller
— Controller installs rules to handle remaining packets

L Controller

EEE
eckers (P WD W

* What if more packets arrive before rules installed?
— Multiple packets of a flow reach the controller

* What if rules along a path installed out of order?
— Packets reach intermediate switch before rules do

Must think about all possible event orderings.

Better: Increase the
level of abstraction

« Separate reading from writing
— Reading: specify queries on network state
— Writing: specify forwarding policies

 Compose multiple tasks
— Write each task once, and combine with others

* Prevent race conditions
— Automatically apply forwarding policy to extra packets

« See http://frenetic-lang.org/

http://frenetic-lang.org/

Deep Network Programability

Pinky Gee, Brain, did OpenFlow take over the world?

The Brain Well... no.

OpenFlow is not all roses

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

The specification itself keeps getting more complex

extra features make the software agent more complicated

consequences Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all

Enters... Protocol Independent Switch Architecture and P4

[NON)
v

Q| @

=/ 0000000-0000004.pdf (page 1 of 8) ~

My
<
03
®

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly", Glen Gibb', Martin I1zzard’, Nick McKeown*, Jennifer Rexford™",
Cole Schlesinger™, Dan Talayco’, Amin Vahdat®, George Varghese®, David Walker™”

'Barefoot Networks “Intel *Stanford University

ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
vears, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deploved. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo P4 ta confionre a curiteh 0 add a new hierarchical l1abel

“"Princeton University *Google

*Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g.. NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.

SDN Control Plane

Enters... Protocol Independent Switch Architecture and P4

o0 e
M~

Q| K

= 0000000-0000004.pdf (page 1 of 8) ~

My
<
03
®

Q Search

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly", Glen Gibb’, Martin Izzard’, Nick McKeown*, Jennifer Rexford™",
Cole Schlesinger™, Dan Talayco’, Amin Vahdat®, George Varghese®, David Walker™”

"Barefoot Networks “Intel

ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
vears, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deployed. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo P4 ta confionre a curiteh 0 add a new hierarchical l1abel

‘Stanford University " Princeton University ¥Google

*Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g., NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.

Protocol Independent Switch Architecture (PISA) for
high-speed programmable packet forwarding

Parser Match-Action Pipeline Deparser
> > >
MOV T 1 (i
p > > >
() > > .

A slightly more accurate architecture

Ingress Egress

Match-Action Pipeline Match-Action Pipeline

1
YYVVVY

Parser Switching logic Deparser
crossbar, shared buffers, ...

Enters... Protocol Independent Switch Architecture and P4

o0 e
M~

Q| K

= 0000000-0000004.pdf (page 1 of 8) ~

My
<
03
®

Q Search

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly’, Glen Gibb’, Martin Izzard’, Nick McKeown*, Jennifer Rexford™",
Cole Schlesinger™, Dan Talayco’, Amin Vahdat®, George Varghese®, David Walker™”

"Barefoot Networks “Intel

ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
vears, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deployed. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo P4 ta confionre a curiteh 0 add a new hierarchical l1abel

‘Stanford University " Princeton University *Google

*Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g., NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.

———

By default,
PISA doesn't do anything, it's just an "architecture”

Ingress Egress

Parser Switching logic Deparser

P4 is a domain-specific language which describes
how a PISA architecture should process packets

a4

https://p4.org

IPv4

Logical behavior

I
| -
)
C
O
O
wn
Vo)
Q
O
O
<

— forward

— drop

Ethernet

IPv6

PISA backend

AAAAAA

>

AAAAAA

2

AAAAAA

—

AAAAAA

{3

AAAAAA

2

AAAAAA

PISA + P4 is strictly more general OpenFlow

4

R

Program

Compile

l

P4 & OpenFlow

Apps

Northbound API

OpenFlow Controller

OpenFlow Protocol

OpenFlow Agent

>
Auto-Generated API

Driver

>

Target Binary

Programmable Data Plane ASIC

R

Copyright © 2016 P4 Language Consortium.

2l

Course Goals

This course will introduce you to the emerging area of
network programmability

Learn the principles of network programmability

at the control-plane and at the data-plane level

Get fluent in P4 programming

the go-to language for programming data planes

Get insights into hard, research-level problems

and how programmability can help solving them

Course organization

The course is gonna be divided in
two 7-weeks blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 in teams of 2—3

The course is gonna be divided in
two 7-weeks blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 in teams of 2—3

There will be 2h of lectures & 2h of exercises

Thu 8—10 Lecture (for 7 weeks)

Thu 10—12 Practical exercises with P4

Exercises are not graded but will help at the exam

For now, both will take place in LFW B 3

The course is gonna be divided in
two 7-weeks blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 in teams of 2—3

For the project, we'll ask you to develop
your own network application

Your can choose your application

we'll provide feedback and a list of default choices

We'll provide feedback and assist you throughout

during the lecture slot and/or online

Grade will depend on the code, report and presentation

presentations during the last week of the lecture

You'll have the opportunity to port your application on
real hardware (not mandatory... if you're motivated :-))

i [l
,l-' »an o ’ by

Barefoot Tofino Wedge 100BF-32X 3.2 Tbps

Your final grade

Exam Group project

50% 50%

Exam

50%

Design a P4 application
for solving problem <X>

Optimize program <X>

Is program <X> correct?

. important to do the exercises

Your dream team for the semester

Edgar Roland Thomas Maria

Our website: https://adv-net.ethz.ch/
check it out regularly

Check for slides, pointers to exercises, readings, ...

L @ ﬂAdvancedTopicsinCommur X 0\ Laurent

& C {) @& Secure | https://adv-net.ethz.ch %l @

This class will introduce students to advanced, research-level topics in the area of communication networks, both
theoretically and practically. Coverage will vary from semester to semester. Repetition for credit is possible, upon consent
of the instructor. During the Fall Semester of 2018, the class will concentrate on network programmability and network
data plane programming.

ss_port)
tandard_netadata. ingress P

Lectures Exercises Project
Weekly lectures in the first part of the semester Ungraded theoretical and practical exercises as Graded practical project performed in groups
(more details coming soon) well as paper readings (more details coming soon) (more details coming soon)

[T (TR Weekly lectures (2h per week)
[STCUCEEI Weekly theoretical and practical exercises (2h per week)

Project Practical project (in groups)

Sep 23 Sep 30 Oct7 Oct 14 Oct 21 Oct 28 Nov 4 Nov 11 Nov 18 Nov 25 Dec 2 Dec9

https://adv-net.ethz.ch/

We’ll use Slack (chat client)
to discuss about the course, exercises, and projects

8 00

Acme Sites

£

changes
general

products

2°F

§~, kristel
| % @

#changes v

stewart
Im'ma tweeting that

https://twitter.com/glitchlog/status/223600465462566912
3= Glitch Change Log @glitchlog
12 new hairstyles & 19 new skin colors have been added to the Vanity. Taste
the hairy rainbow! Forum post:

http://www.glitch.com/forum/general/24360/
Thursday, July 12th, 2012 M

myles

Entering a street with a Qurazy for you now shows a pretty animated overlay where the growl used to go, for 10 seconds
liz

Fixed bug #9358. Piggies shouldn't get stuck walking in place any more.

bugbot

Bug #9358

Title
Piggies are stuck walking in place

Creator Assignee
mackenzie liz

Status Priority
fixed normal

eric
@kristel, can you test on dev.glitch.com to see if coat sleeves are now working as expected?

kristel
indeed they are! thanks @eric!

Web, smartphone and desktop clients available

-

Register today using your real name
> https://adv-netl 8.slack.com/signup

8 O O

Acme Sites v # changes v

8 stewart
Im'ma tweeting that

https://twitter.com/glitchlog/status/223600465462566912
32 Glitch Change Log
12 new hairstyles & 19 new skin colors have been added to the Vanity. Taste
the hairy rainbow! Forum post:

changes
general

products http://www.glitch.com/forum/general/24360/

myles

Entering a street with a Qurazy for you now shows a pretty animated overlay where the growl used to go, for 10 seconds
liz

Fixed bug #9358. Piggies shouldn't get stuck walking in place any more.

bugbot
Bug #9358

Title
Piggies are stuck walking in place

« %

Creator Assignee
mackenzie liz

Status Priority
fixed normal

eric
@kristel, can you test on dev.glitch.com to see if coat sleeves are now working as expected?

kristel
indeed they are! thanks @eric!

& b

g\, kristel
",, @ onlir

Web, smartphone and desktop clients available

https://adv-net18.slack.com/signup

Should | take this course?

It depends...

You shouldn't take the course if...
you hate programming
you don't want to work during the semester

you expect 10+ years of exam history

Besides that, if you like networking... go for it!

All of the assignments (and the course) will be new,
meaning you will act as guinea pigs...

We'll try to take your feedback into account... so shoot!

Advanced Topics in Communication Networks

Programming Network Data Planes

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zurich (D-ITET)
Sep 20 2018

https://nsg.ee.ethz.ch

Let's look at one

&y 4

example

IP forwarding

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200
. /7. s ./ . s/ s ./

| | | | | |
LAN 1

== = E‘%%? LAN 2
|

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table

IP forwarding

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200
. /7. s ./ . s/ s ./
| | | | | |
LAN 1 =~ == LAN 2
=

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table

How can we do this in P4?
IP forwarding
Forwarding table lookup
Update destination MAC
Decrement TTL

Send packet to output port

A P4 program consists of three basic parts

Parser Match-Action Pipeline Deparser
29 > B> >
or Rl 41
Qp > > >
> > >

Match-Action Pipeline

1
YYVVVY

]
YYVVVY

Programmer declares the
that should be recognizec

neaders

and their order in the pac

Ket

(D

Deparser

Match-Action Pipeline

1
AAALL

]
\AAAAA
v

Programmer defines the tables
and the exact processing algorithm

Deparser

Match-Action Pipeline Deparser

1
"'{}"'
1
"'{}"'
]
L AAAAA

v

<}

Programmer declares
how the output packet
will look on the wire

v1switch(
MyParser(),

MyVerifyChecksum(),

MyIngress(),
MyEgress(),

MyComputeChecksum(),
MyDeparser () —

) main;

Match-Action Pipeline

L AAAAA

\AAAAA/

\AAAAA

Deparser

#include <core.p4>

#include <vlmodel.p4>

const bit<1l6> TYPE_IPV4 = 0x800;
typedef bit<32> ip4Addr_t;
header 1pv4_t {..}

struct headers {..}

parser MyParser(..) {
state start {..}

state parse_ethernet {..}
y state parse_ipv4 {..}

control MyIngress(..) {
action ipv4_forward(.) {..}
table 1pv4_lpm {..}

apply {
if (D) {.}

}

control MyDeparser(..) {..}

v1switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),

MyEgress (),
MyComputeChecksum(),
MyDeparser ()

) main;

Libraries

Declarations

Parse packet headers

Control flow
to modify packet

Assemble
modified packet

“‘main()”

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

43

AAAAAA

A

AAAAAA

4>

S

The parser uses a state machine
to map packets into headers and metadata

Packet Headers and metadata

a:b:c:d — 1:2:3:4 /@ meta {ingress_port: 1, ..}

ethernet {srcAddr: a:b:c:d, ..}

1.2.3.4 - 5.6.7.8

ipv4 {srcAddr: 1.2.3.4, .}
1234 — 56789
tcp {srcpPort: 12345, ..}

The parser has three predefined states:
start, accept and reject

start

¢
h
o
g
</

[\

accept reject

parser MyParser(..) {

state start {
transition parse_ethernet;

start }
state parse_ethernet {
l packet.extract(hdr.ethernet);
transition select(Chdr.ethernet.etherType) {
O0x800: parse_ipv4;
parse_ethernet default: accept;
}
}
state parse_ipv4d {
packet.extract(Chdr.ipv4);
parse_ipv4 transition selectChdr.ipv4.protocol) {

6: parse_tcp;

17: parse_udp;
z/// \\\N default: accept;
}
}

state parse_tcp {

packet.extract(Chdr.tcp);
X transition accept;
}

state parse_udp {
packet.extract(hdr.udp);
transition accept;

}
}

parse_tcp parse_udp

accept reject

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

43

AAAAAA

A

AAAAAA

4>

S

Control

Similar to functions in C

declare variables

create tables

describe control flow

Basic building blocks
of P4 programs

Control flow

Actions

Tables

similar to C but without loops

similar to functions in C

match a key and return an action

Control flow similar to C but without loops

Actions

Tables

Controls can apply changes
to packets

Headers and metadata from parser

control MyIngress(inout headers hdr,
1nout metadata meta,
1nout standard_metadata_t std_meta) {

bit<9> port; Variable declaration
apply {
port = 1

std_meta.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = 0x2;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

Control flow

Control flow

Actions similar to functions in C

Tables

Actions allow to re-use code

control MyIngress(inout headers hdr,
1nout metadata meta,
1nout standard_metadata_t std_meta) {

action i1pv4_forward(macAddr_t dstAddr,
egressSpec_t port) {
std_meta.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

apply { ‘
1pv4_forward(0x123, 1);

}
}

Control flow

Actions

Tables match a key and return an action

Control Plane

A

Key

Headers

& Meta

Match
Key

Default

' ID

Action
Data

—

Headers and
Metadata

Hit

v

DB Action
Code IR

T

Data

—

Headers
& Meta

Table name

Field(s) to match
table {

key = {
e Match type
}

actions = {

Possible actions

}
size = ; Max. # entries in table
default_action = ; Default action

}

Example: IP forwarding table

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200
& s/, s &/ & . /! |‘/| |./
| | | |
LAN 1 =~ == LAN 2
=

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table

Destination IP address

Key

.

Headers
& Meta

Longest prefix match

Match
Key

1: ipv4_forward(mac, port)
2:drop()

Action
ID Data

1pv4_fTorward(mac, port)
drop()

Action

Code

Table name

table 1pv4_lpm {
key = {
hdr.ipv4.dstAddr: Tpm; Longest prefix match
}

actions = {
1pv4_forward;

Destination IP address

Possible actions

drop;

}

size = 1024: Max. # entries in table
default_action = drop(Q); Default action

}

Example: IP forwarding table

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200

| |

01:01:01:01:01:01 02:02:02:02:02:02
1.2.3.0/24 <+—

5.6.7.0/24 —>

forwarding table

Control Plane

|

table_add ipv4_1lpm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1
table_add ipv4_1lpm ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

1.2.3.0/24
5.6.7.0/24

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

43

AAAAAA

A

AAAAAA

4>

S

The Deparser assembles the headers back
into a well-formed packet

Headers Deparser Packet

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, ..} 0> o>

tcp {srcpPort: 12345, ..}

Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, ..} > o>

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet) ;

Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);

Headers Deparser Packet

a:b:c:d = 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

1234 — 56789

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet) ;

packet.emit(hdr.ipv4);
packet.emit(hdr.tcp);

Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

1234 — 56789

tcp {srcport: 12345, ..}

