
Advanced Topics in Communication Networks

Prof. Laurent Vanbever

Advanced Topics in Communication Networks | Thu 20 Sep 2018 1 of 17

Networking is on the verge of a paradigm shift

towards deep programmability

Network programmability is attracting

tremendous industry interest (and money)

Networking Systems Security PL
Distributed  
Algorithms

SIGCOMM

NSDI

HotNets

CoNEXT

OSDI

SOSP

SOCC

PODC

DISC

PLDI

POPL

OOPSLA

CCS

NDSS

Usenix  
 Security

Network programmability is getting traction  
in many academic communities

S&P

of citations of the original

OpenFlow paper (*) in ~10 years

(*) https://dl.acm.org/citation.cfm?id=1355746

>7.7k

Why? It's really a story in 3 stages

Advanced Topics in Communication Networks | Thu 20 Sep 2018 2 of 17

Stage 1

The network management crisis

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Networks are large distributed systems

running a set of distributed algorithms

IP router

These algorithms produce the forwarding state

which drives IP traffic to its destination

Control plane

Data plane

Control plane

Data plane
Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

dest

Google

Yahoo!

ETHZ

0

… …

next-hop

… …
Skype

Forwarding state

1

0

2

0
1

2

Operators adapt their network forwarding behavior

by configuring each network device individually

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

Adapt C so that the network follows the new behavior

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

Adapt C so that the network follows the new behavior

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough

to bring down the entire network

Anything else than 700 creates blackholes

Advanced Topics in Communication Networks | Thu 20 Sep 2018 3 of 17

It's not only about the problem of configuring…

the level of complexity in networks is staggering

Mark Handley. Re-thinking the control architecture of the internet.  
Keynote talk. REARCH. December 2009.

Source

Complexity + Low-level Management = Problems

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/

November 2017

For a little more than 90 minutes […],

Internet service for millions of users in the U.S.

and around the world slowed to a crawl.

The cause was yet another BGP routing leak,

a router misconfiguration directing Internet traffic

from its intended path to somewhere else.

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

August 2017

Someone in Google fat-thumbed a

Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

The outage in Japan only lasted a couple of hours,

but was so severe that […] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.

the result of which was traffic from Japanese giants

like NTT and KDDI was sent to Google

on the expectation it would be treated as transit.

[…]

NYSE network operators identified

the culprit of the 3.5 hour outage,

blaming the incident on a

“network configuration issue”

Advanced Topics in Communication Networks | Thu 20 Sep 2018 4 of 17

http://bit.ly/2sBJ2jf

“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

0 5 10 15 20

% of route leaks

Ironically, this means that data networks work better

during week-ends…

source: Job Snijders (NTT)
National Research Council. The Internet Under Crisis Conditions: Learning from September 11

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Information suggests that

operators were watching the news

instead of making changes

to their infrastucture

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

“Cost per network outage

can be as high as 750 000$”

Smart Management for Robust Carrier Network Health 
and Reduced TCO!, NANOG54, 2012

closed software

closed hardware

Cisco™ device

Solving this problem is hard because
network devices are completely locked down

Advanced Topics in Communication Networks | Thu 20 Sep 2018 5 of 17

Stage 2

Software-Defined Networking

What is SDN and how does it help?

• SDN is a new approach to networking
– Not about “architecture”: IP, TCP, etc.

– But about design of network control (routing, TE,…)

• SDN is predicated around two simple concepts
– Separates the control-plane from the data-plane

– Provides open API to directly access the data-plane

• While SDN doesn’t do much, it enables a lot

Rethinking the �Division of Labor�

Traditional Computer Networks

Data plane:
Packet

processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks

Track topology changes, compute
routes, install forwarding rules

Control plane:
Distributed algorithms,

establish state in devices

Software Defined Networking (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,
slow

Dumb,
fast

SDN advantages

• Simpler management
– No need to �invert� control-plane operations

• Faster pace of innovation
– Less dependence on vendors and standards

• Easier interoperability
– Compatibility only in �wire� protocols

• Simpler, cheaper equipment
– Minimal software

OpenFlow Networks

Advanced Topics in Communication Networks | Thu 20 Sep 2018 6 of 17

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow switches can emulate
different kinds of boxes

• Router
– Match: longest

destination IP prefix
– Action: forward out a

link
• Switch
– Match: destination MAC

address
– Action: forward or flood

• Firewall
– Match: IP addresses and

TCP/UDP port numbers
– Action: permit or deny

• NAT
– Match: IP address and

port
– Action: rewrite address

and port

Advanced Topics in Communication Networks | Thu 20 Sep 2018 7 of 17

Controller: Programmability

SDN/OpenFlow
controller

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

while (true):
read event e:
if e == switch up:

- update topology
- populates switch table

…

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

Controller: Programmability

Example OpenFlow Applications

• Dynamic access control
• Seamless mobility/migration
• Server load balancing
• Network virtualization
• Using multiple wireless access points
• Energy-efficient networking
• Adaptive traffic monitoring
• Denial-of-Service attack detection

E.g.: Dynamic Access Control

• Inspect first packet of a connection
• Consult the access control policy
• Install rules to block or route traffic

E.g.: Seamless Mobility/Migration

• See host send traffic at new location
• Modify rules to reroute the traffic

E.g.: Server Load Balancing
• Pre-install load-balancing policy
• Split traffic based on source IP

src=0*

src=1*

Challenges

Heterogeneous Switches

• Number of packet-handling rules
• Range of matches and actions
• Multi-stage pipeline of packet processing
• Offload some control-plane functionality (?)

access
control

MAC
look-up

IP
look-up

Advanced Topics in Communication Networks | Thu 20 Sep 2018 8 of 17

Controller Delay and Overhead

• Controller is much slower than the switch
• Processing packets leads to delay and overhead
• Need to keep most packets in the �fast path�

packets

Distributed Controller

Network OS

Controller
Application

Network OS

Controller
Application

For scalability
and reliability

Partition and replicate state

Testing and Debugging

• OpenFlow makes programming possible
– Network-wide view at controller
– Direct control over data plane

• Plenty of room for bugs
– Still a complex, distributed system

• Need for testing techniques
– Controller applications
– Controller and switches
– Rules installed in the switches

Programming Abstractions

• OpenFlow is a low-level API
– Thin veneer on the underlying hardware

• Makes network programming
possible, not easy!

Controller

Switches

Example: Simple Repeater

def switch_join(switch):
Repeat Port 1 to Port 2
p1 = {in_port:1}
a1 = [forward(2)]
install(switch, p1, DEFAULT, a1)

Repeat Port 2 to Port 1
p2 = {in_port:2}
a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

Simple Repeater

1 2

Controller

When a switch joins the network, install two forwarding rules.

Example: Web Traffic Monitor

def switch_join(switch):
Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def stats_in(switch, p, bytes, …)
print bytes
sleep(30)
query_stats(switch, p)

Monitor �port 80� traffic

1 2

Web traffic

When a switch joins the network, install one monitoring rule.

Composition: Repeater + Monitor

def switch_join(switch):
pat1 = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, pat1, DEFAULT, None, [forward(2)])
install(switch, pat2web, HIGH, None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater + Monitor

Must think about both tasks at the same time.

Asynchrony: Switch-Controller Delays

• Common OpenFlow programming idiom
–First packet of a flow goes to the controller
–Controller installs rules to handle remaining packets

• What if more packets arrive before rules installed?
–Multiple packets of a flow reach the controller

• What if rules along a path installed out of order?
–Packets reach intermediate switch before rules do

Must think about all possible event orderings.

Controller

packets

Advanced Topics in Communication Networks | Thu 20 Sep 2018 9 of 17

Better: Increase the
level of abstraction

• Separate reading from writing
–Reading: specify queries on network state
–Writing: specify forwarding policies

• Compose multiple tasks
–Write each task once, and combine with others

• Prevent race conditions
–Automatically apply forwarding policy to extra packets

• See http://frenetic-lang.org/

Stage 3

Deep Network Programability

Gee, Brain, did OpenFlow take over the world?

Well… no.

Pinky

The Brain

OpenFlow is not all roses

The specification itself keeps getting more complex

extra features make the software agent more complicated

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all

consequences

Enters… Protocol Independent Switch Architecture and P4 Enters… Protocol Independent Switch Architecture and P4

Parser Match-Action Pipeline Deparser

Protocol Independent Switch Architecture (PISA) for
high-speed programmable packet forwarding

Parser

Match-Action Pipeline

Deparser

Match-Action Pipeline

Ingress Egress

Switching logic
crossbar, shared buffers, …

A slightly more accurate architecture

Advanced Topics in Communication Networks | Thu 20 Sep 2018 10 of 17

Enters… Protocol Independent Switch Architecture and P4
By default,
PISA doesn't do anything, it's just an "architecture"

Parser

Match-Action Pipeline

Deparser

Match-Action Pipeline

Ingress Egress

Switching logic
crossbar, shared buffers, …

P4 is a domain-specific language which describes
how a PISA architecture should process packets

https://p4.org

Ethernet

IPv4

IPv6

Access Control

Compiler

Logical behavior

PISA backend

forward

drop

PISA + P4 is strictly more general OpenFlow

Course Goals

Get fluent in P4 programming

the go-to language for programming data planes

Learn the principles of network programmability

at the control-plane and at the data-plane level

Get insights into hard, research-level problems

and how programmability can help solving them

This course will introduce you to the emerging area of
network programmability

Course organization

Advanced Topics in Communication Networks | Thu 20 Sep 2018 11 of 17

The course is gonna be divided in

two 7-weeks blocks

Group projectLectures/Exercices

~7 weeks
how to program in P4

>= 7 weeks
in teams of 2—3

Group projectLectures/Exercices

~7 weeks
how to program in P4

>= 7 weeks
in teams of 2—3

The course is gonna be divided in

two 7-weeks blocks

Practical exercises with P4

LectureThu 8—10

There will be 2h of lectures & 2h of exercises

Thu 10—12

(for 7 weeks)

For now, both will take place in LFW B 3

Exercises are not graded but will help at the exam

Group projectLectures/Exercices

~7 weeks
how to program in P4

>= 7 weeks
in teams of 2—3

The course is gonna be divided in

two 7-weeks blocks

For the project, we'll ask you to develop
your own network application

We'll provide feedback and assist you throughout

during the lecture slot and/or online

Your can choose your application

we'll provide feedback and a list of default choices

Grade will depend on the code, report and presentation

presentations during the last week of the lecture

You'll have the opportunity to port your application on
real hardware (not mandatory… if you're motivated :-))

Barefoot Tofino Wedge 100BF-32X 3.2 Tbps

Group projectExam

50%

Your final grade

oral
50%

code, report, and presentation

Exam

50%
oral

Design a P4 application
for solving problem <X>

Optimize program <X>

Is program <X> correct?

… important to do the exercises

Examples

Advanced Topics in Communication Networks | Thu 20 Sep 2018 12 of 17

Edgar Roland Thomas Maria

Your dream team for the semester
Our website: https://adv-net.ethz.ch/

check it out regularly

Check for slides, pointers to exercises, readings, …

We’ll use Slack (chat client)  
to discuss about the course, exercises, and projects

Web, smartphone and desktop clients available

Register today using your real name

> https://adv-net18.slack.com/signup

Web, smartphone and desktop clients available

Should I take this course?

It depends…

You shouldn't take the course if…

you hate programming

you don't want to work during the semester

you expect 10+ years of exam history

Besides that, if you like networking… go for it!

All of the assignments (and the course) will be new,

meaning you will act as guinea pigs…

We'll try to take your feedback into account… so shoot!

Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich (D-ITET)

Laurent Vanbever

Sep 20 2018

nsg.ee.ethz.ch

Advanced Topics in Communication Networks | Thu 20 Sep 2018 13 of 17

Let's look at one

example

IP forwarding 
in a traditional router

LAN 1

...

LAN 2

...

router router router

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1

1.2.3.0/24

5.6.7.0/24

forwarding table

…

5.6.7.2 5.6.7.200

IP forwarding 
in a P4?

LAN 1

...

LAN 2

...

router router router

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1

1.2.3.0/24

5.6.7.0/24

forwarding table

…

5.6.7.2 5.6.7.200

How can we do this in P4?

Forwarding table lookup

Update destination MAC

Decrement TTL

Send packet to output port

IP forwarding

Parser Match-Action Pipeline Deparser

A P4 program consists of three basic parts 

Programmer declares the headers
that should be recognized  
and their order in the packet

Parser Match-Action Pipeline Deparser

Programmer defines the tables 
and the exact processing algorithm

Parser Match-Action Pipeline Deparser

Programmer declares
how the output packet
will look on the wire

Parser Match-Action Pipeline Deparser

Advanced Topics in Communication Networks | Thu 20 Sep 2018 14 of 17

Parser Match-Action Pipeline Deparser

V1Switch(
 MyParser(),
 MyVerifyChecksum(),
 MyIngress(),
 MyEgress(),
 MyComputeChecksum(),
 MyDeparser()
) main;

Libraries

Declarations

Parse packet headers

Control flow  
to modify packet

Assemble  
modified packet

“main()”

#include <core.p4>
#include <v1model.p4>

const bit<16> TYPE_IPV4 = 0x800;
typedef bit<32> ip4Addr_t;
header ipv4_t {…}
struct headers {…}

parser MyParser(…) {
 state start {…}
 state parse_ethernet {…}
 state parse_ipv4 {…}
}

control MyIngress(…) {

 action ipv4_forward(…) {…}

 table ipv4_lpm {…}

 apply {
 if (…) {…}
 }
}

control MyDeparser(…) {…}

V1Switch(
 MyParser(),
 MyVerifyChecksum(),
 MyIngress(),
 MyEgress(),
 MyComputeChecksum(),
 MyDeparser()
) main;

Parser Match-Action Pipeline Deparser

The parser uses a state machine  
to map packets into headers and metadata

Packet Headers and metadata

meta {ingress_port: 1, …}

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

a:b:c:d → 1:2:3:4

1.2.3.4 → 5.6.7.8

1234 → 56789

Payload

start

accept reject

The parser has three predefined states:  
start, accept and reject

Packet

a:b:c:d → 1:2:3:4

1.2.3.4 → 5.6.7.8

1234 → 56789

Headers and metadata

meta {ingress_port: 1, …}

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

start

accept reject

parse_ethernet

parse_ipv4

parse_tcp parse_udp

parser MyParser(…) {

}

 state start {
 transition parse_ethernet;
 }

 state parse_ethernet {
 packet.extract(hdr.ethernet);
 transition select(hdr.ethernet.etherType) {
 0x800: parse_ipv4;
 default: accept;
 }
 }

 state parse_ipv4 {
 packet.extract(hdr.ipv4);
 transition select(hdr.ipv4.protocol) {
 6: parse_tcp;
 17: parse_udp;
 default: accept;
 }
 }

 state parse_tcp {
 packet.extract(hdr.tcp);
 transition accept;
 }

 state parse_udp {
 packet.extract(hdr.udp);
 transition accept;
 }

Parser Match-Action Pipeline Deparser

Control

declare variables

create tables

describe control flow

…

Similar to functions in C

Advanced Topics in Communication Networks | Thu 20 Sep 2018 15 of 17

Basic building blocks  
of P4 programs

Control flow

Actions

Tables

similar to C but without loops

similar to functions in C

match a key and return an action

Control

Control flow

Actions

Tables

similar to C but without loops

similar to functions in C

match a key and return an action

Control

Controls can apply changes 
to packets

Control flow

Headers and metadata from parser

Variable declaration

control MyIngress(inout headers hdr,

 inout metadata meta,

 inout standard_metadata_t std_meta) {

 bit<9> port;

 apply {

 port = 1 
 std_meta.egress_spec = port;

 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

 hdr.ethernet.dstAddr = 0x2;

 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

 }

}

Control flow

Actions

Tables

similar to C but without loops

similar to functions in C

match a key and return an action

Control

Actions allow to re-use code  
similar to functions in C

control MyIngress(inout headers hdr,

 inout metadata meta,

 inout standard_metadata_t std_meta) {

 action ipv4_forward(macAddr_t dstAddr,  
 egressSpec_t port) {

 std_meta.egress_spec = port;

 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

 hdr.ethernet.dstAddr = dstAddr;

 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

 }

 apply {

 ipv4_forward(0x123, 1);

 }

}

Control flow

Actions

Tables

similar to C but without loops

similar to functions in C

match a key and return an action

Control

Match Action
Key ID Data

Default

Hit

ID

Data

Action 
Code

Headers 
& Meta

Key
Headers and  

Metadata

Headers 
& Meta

Control Plane

table {

 key = {

 : ;

 }

 actions = {

 }

 size = ;

 default_action = ;

}

Field(s) to match

Match type

Possible actions

Max. # entries in table

Default action

Table name

Advanced Topics in Communication Networks | Thu 20 Sep 2018 16 of 17

Example: IP forwarding table

LAN 1

...

LAN 2

...

router router router

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1

1.2.3.0/24

5.6.7.0/24

forwarding table

…

5.6.7.2 5.6.7.200
Match Action
Key ID Data

Default

Hit

ID

Data

Action 
Code

Headers 
& Meta

Headers and  
Metadata

Headers 
& Meta

Control Plane

Key

Destination IP address

Action
ID Data

Default

Hit

ID

Data

Action 
Code

Headers 
& Meta

Headers and  
Metadata

Headers 
& Meta

Control Plane

Key

Longest prefix match

Key
Match

Default

Hit

ID

Data

Action 
Code

Headers 
& Meta

Headers and  
Metadata

Headers 
& Meta

Control Plane

Key
Key

Match Action
ID Data

1: ipv4_forward(mac,port)  
2: drop()

Default

Hit

ID

DataHeaders 
& Meta

Headers and  
Metadata

Headers 
& Meta

Control Plane

Key
Key

Match Action
ID Data

Action 
Code

ipv4_forward(mac,port)  
drop()

table ipv4_lpm {

 key = {

 hdr.ipv4.dstAddr: lpm;

 }

 actions = {

 ipv4_forward;

 drop;

 }

 size = 1024;

 default_action = drop();

}

Destination IP address

Longest prefix match

Possible actions

Max. # entries in table

Default action

Table name

Example: IP forwarding table

LAN 1

...

LAN 2

...

router router router

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1

1.2.3.0/24

5.6.7.0/24

forwarding table

…

5.6.7.2 5.6.7.2005.6.7.2 5.6.7.200

01:01:01:01:01:01

1 2

02:02:02:02:02:02

Match Action
Key ID Data

Default

Hit

ID

Data

Action 
Code

Headers 
& Meta

Key
Headers and  

Metadata

Headers 
& Meta

2

Control Plane

table_add ipv4_lpm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1  
table_add ipv4_lpm ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

1.2.3.0/24 1 01:…, 1
5.6.7.0/24 1 02:…, 2

2

Advanced Topics in Communication Networks | Thu 20 Sep 2018 17 of 17

Parser Match-Action Pipeline Deparser PacketHeaders

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

Deparser

The Deparser assembles the headers back  
into a well-formed packet

Headers

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

PacketDeparser

control MyDeparser(packet_out packet, in headers hdr) {

 apply {

 packet.emit(hdr.ethernet);

 }

}

a:b:c:d → 1:2:3:4

Headers

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

PacketDeparser

a:b:c:d → 1:2:3:4

control MyDeparser(packet_out packet, in headers hdr) {

 apply {

 packet.emit(hdr.ethernet);

 packet.emit(hdr.ipv4);

 }

}

1.2.3.4 → 5.6.7.8

PacketHeaders

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

Deparser

control MyDeparser(packet_out packet, in headers hdr) {

 apply {

 packet.emit(hdr.ethernet);

 packet.emit(hdr.ipv4);

 packet.emit(hdr.tcp);

 }

}

a:b:c:d → 1:2:3:4

1.2.3.4 → 5.6.7.8

1234 → 56789

PacketHeaders

ethernet {srcAddr: a:b:c:d, …}

ipv4 {srcAddr: 1.2.3.4, …}

tcp {srcPort: 12345, …}

Deparser

a:b:c:d → 1:2:3:4

1.2.3.4 → 5.6.7.8

1234 → 56789

Payload

