
NetHide: Secure and Practical
Network Topology Obfuscation

Roland Meier(1), Petar Tsankov(1), Vincent Lenders(2),
Laurent Vanbever(1), Martin Vechev(1)

nethide.ethz.ch

USENIX Security 2018

(2)(1)

http://nsg.ee.ethz.ch

 2

Public serversBotnet

Link-flooding attacks (LFAs)  
target the infrastructure

 3

Public serversBotnet

Low-rate, legitimate flows 
spread over many endpoints

Link-flooding attacks (LFAs)  
require knowing the topology

 4

Public serversBotnet

?

Public serversBotnet

 5

Public serversBotnet

 6

$ traceroute X

1

X

Public serversBotnet

 7

$ traceroute X

1

X

UDP

dst = X

TTL = 1

Public serversBotnet

 8

$ traceroute X

1 —A— 1.755 ms

A

ICMP

TTL Exceeded

src = A

X

UDP

dst = X

TTL = 1

Public serversBotnet

 9

$ traceroute X

1 —A— 1.755 ms

2

A X

UDP

dst = X

TTL = 2

Public serversBotnet

 10

$ traceroute X

1 —A— 1.755 ms

2

A X

UDP

dst = X

TTL = 2

UDP

dst = X

TTL = 1

Public serversBotnet

 11

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

A

ICMP

TTL Exceeded

src = B

X

UDP

dst = X

TTL = 2

UDP

dst = X

TTL = 1

B

Public serversBotnet

 12

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

A

B

C

ICMP

TTL Exceeded

src = C

X

UDP

dst = X

TTL = 3

Public serversBotnet

 13

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

A

B

C

D
ICMP

TTL Exceeded

src = D

X

UDP

dst = X

TTL = 4

Public serversBotnet

 14

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

5 —E— 0.827 ms

A

B

C

D
E

ICMP

TTL Exceeded

src = E

X

UDP

dst = X

TTL = 5

Public serversBotnet

 15

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

5 —E— 0.827 ms

6 —X— 0.819 ms
A

B

C

D
E

ICMP

TTL Exceeded

src = X

X

UDP

dst = X

TTL = 6

So the solution is to hide the topology?

yes, but…

 17

traceroute is an essential debugging tool

So the solution is to hide the topology?

parts of

So the solution is to hide the topology?

which parts?

how?

parts of

NetHide: Secure and Practical  
Network Topology Obfuscation

 20

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

NetHide: Secure and Practical  
Network Topology Obfuscation

 21

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

Topology obfuscation 
as an optimization problem

 22

Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality

NetHide: Secure and Practical  
Network Topology Obfuscation

 23

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 24

it scales to large networks

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 25

it scales to large networks

Maintaining the utility of debugging tools 
requires sending packets through the actual network

 26

Answer from a central controller

Answer at the edge

Answer in a virtual clone of the network

Answer from the correct device  
that appears on the path

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 27

it scales to large networks

Programmable network devices allow 
modifying tracing packets at line rate

 28

Read & modify packet headers
e.g. the TTL value

Basic operations
e.g. hash functions and checksums

Add or remove custom headers
to store information

Programmable network devices allow 
modifying tracing packets at line rate

 29

Packets with a small TTL value
expire in the network

Packets with different path lengths in P and V
need to increase or decrease TTL

Programmable network devices 
are configured through match+action tables

 30

X

Y

If I receive a packet to X with TTL = i,  
I should send it to Y with TTL = j

Programmable network devices 
are configured through match+action tables

 31

X

Y

X

original

TTLdst
1 Y

new

TTLdst
2

physical path

virtual path

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 32

it scales to large networks

Encoding state in packets 
instead of storing it in devices

 33

src IP dst IP TTL

src port dst port

payload

IP

UDP

src IP dst IP TTL

src port dst port

payload

IP

Y src IP TTL

TTL exceeded

IP

ICMP

UDP

D Y 1

src port 9999

payload

IP

UDP

src IP dst IP TTL

src port dst port

signature

meta

UDP

D Y 1

src port 9999

payload

IP

UDP

src IP dst IP TTL

src port dst port

signature

meta

Y D TTL

TTL exceeded

IP

ICMP

UDP

D Y

P4 program architecture

 34

NetHide device

In
co

m
in

g

in
te

rf
ac

e

O
u
tg

o
in

g

in
te

rf
ac

e

Contains
meta header?

Modification
required?

Signature
correct?

Restore original
header values

Remove
meta header

Add meta header
and modify

packet

Config

Drop packet

yes

yes

yes

no no

no

PacketPacket

NetHide controller

NetHide: Secure and Practical  
Network Topology Obfuscation

 35

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

NetHide: Secure and Practical  
Network Topology Obfuscation

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

nethide.ethz.ch

