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Public serversBotnet



Link-flooding attacks (LFAs)  
target the infrastructure
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Public serversBotnet

Low-rate, legitimate flows 
spread over many endpoints



Link-flooding attacks (LFAs)  
require knowing the topology
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$ traceroute X  
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So the solution is to hide the topology?

yes, but…
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traceroute is an essential debugging tool



So the solution is to hide the topology?

parts of



So the solution is to hide the topology?

which parts?

how?

parts of



NetHide: Secure and Practical  
Network Topology Obfuscation
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NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools 

NetHide computes a secure virtual topology  
that is similar to the physical topology
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NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools 

NetHide computes a secure virtual topology  
that is similar to the physical topology



Topology obfuscation 
as an optimization problem
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Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality
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NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools 

NetHide computes a secure virtual topology  
that is similar to the physical topology



Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment
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it scales to large networks
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it scales to large networks



Maintaining the utility of debugging tools 
requires sending packets through the actual network
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Answer from a central controller

Answer at the edge

Answer in a virtual clone of the network

Answer from the correct device  
that appears on the path



Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment
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it scales to large networks



Programmable network devices allow 
modifying tracing packets at line rate
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Read & modify packet headers
e.g. the TTL value

Basic operations
e.g. hash functions and checksums

Add or remove custom headers
to store information



Programmable network devices allow 
modifying tracing packets at line rate
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Packets with a small TTL value
expire in the network

Packets with different path lengths in P and V
need to increase or decrease TTL



Programmable network devices 
are configured through match+action tables
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X

Y

If I receive a packet to X with TTL = i,  
I should send it to Y with TTL = j



Programmable network devices 
are configured through match+action tables
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Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment
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it scales to large networks



Encoding state in packets 
instead of storing it in devices
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P4 program architecture
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NetHide device
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NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools 

NetHide computes a secure virtual topology  
that is similar to the physical topology
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