Advanced Topics in Communication Networks

Programming Network Data Planes

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zirich
Sep 27 2018

Materials inspired from Jennifer Rexford, Changhoon Kim, and p4.org

Last week on

Advanced Topics in Communication Networks

Networking is on the verge of a paradigm shift
towards deep programmability

Why? It's really a story in 3 stages

The network management crisis

*“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

Ironically, this means that data networks work better
during week-ends...

Monday -

Tuesday —

Wednesday

Thursday -

Friday -

Saturday -

Sunday -

l \ \ |

0 5 10 15 20

% of route leaks

Software-Defined Networking

What is SDN and how does it help?

* SDN is a new approach to networking
— Not about “architecture”: IP, TCP, etc.

— But about design of network control (routing, TE,...

'

 SDN is predicated around two simple concepts

— Separates the control-plane from the data-plane
— Provides open API to directly access the data-plane

* While SDN doesn’t do much, it enables a lot

Traditional Computer Networks

g?

Data plane: "
Packet T

processing &

delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks

Control plane:
Distributed algorithms,

Track topology changes, compute
routes, install forwarding rules

Software Defined Networking (SDN)

Logically-centralized control

OpenFlow is an API
to a switch flow table

e Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

— 4

10. src=1.2.*.*, dest=3.4.5.* 2 drop
05. src = *.*.*.* dest=3.4.*.* 2 forward(2)
01. src=10.1.2.3, dest=*.*.*_.* = send to controller

Deep Network Programability

OpenFlow is not all roses

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

The specification itself keeps getting more complex

extra features make the software agent more complicated

consequences Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all

Enters... Protocol Independent Switch Architecture and P4

[NON
M

Q@

= 0000000-0000004.pdf (page 1 of 8) ~

=

N
<
0r
e

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly", Glen Gibb’, Martin Izzard’, Nick McKeown?, Jennifer Rexford™",
Cole Schlesinger™, Dan Talayco’, Amin Vahdat®, George Varghese®, David Walker™

"Barefoot Networks “Intel *Stanford University

ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
years, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deployed. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo PA ta confionre a cariteh 0 add a new hierarchical lahaol

“"Princeton University *Google

“Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g., NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

SDN Control Plane

Q Searct

P4 is a high-level language for programming
protocol-independent packet processors

Ingress Egress

Parser Switching logic Deparser

P4 is a high-level language for programming
protocol-independent packet processors

P4 specifies packet forwarding behaviors

enables to redefine packet parsing and processing

P4 is protocol-independent

the programmer defines packet headers & processing logic

P4 is target-independent

data plane semantic and behavior can be adapted

IP forwarding

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200

& s/, s ./ . s/, s ./
| | | | | |

LAN 1 LAN 2

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table

This week on

Advanced Topics in Communication Networks

We will start diving into the P4 ecosystem
and look at our first practical usage

P4 P4 P4
environment language in practice
What is needed to Deeper-dive into in-network
program in P4? the language constructs obfuscation

Stateful data plane programming
Probabilistic data structures

P4 P4 P4
environment language in practice

What is needed to
program in P4?

Quick historical recap

P414v1.0.1
1.0.2 December
July v1.0.3 P46 specification (draft)
Initial paper v1.0.4
2014 | 2015 2016 2017 2018

P44 specification

September

P46 specification

May

P414v1.0.1

>

1.0.2 December
July v1.0.3 P46 specification (draft)
Initial paper v1.0.4
| ‘ | ‘ | ‘ | |
| | | | ‘ I
2014 | 2015 2016 2017 2018

P44 specification

September

P46 specification

focus of the lecture

P46 introduces the concept of an architecture

P4 Target P4 Architecture

a model of a specific

_ _ an API to program a target
hardware implementation

Programming a P4 target involves a few key elements

Code Target
P4 Program -— Compiler Control Plane
Architecture Model CPU port v -
» Data Plane Tables Externs

target-specific
binary

User supplied

Vendor supplied

Code Target

P4 Program — Compiler Control Plane

CPU port

» Data Plane Tables Externs

target-specific
binary

User supplied

Vendor supplied

We'll rely on a simple P416 switch architecture (v1model)
which is roughly equivalent to "PISA"

vlimodel/
simple switch

——————— —

N
| P 0]
A U
N R Queues T
p > S and/or p
U £ Buffers U
T R Ingress Match+Action Egress Match+Action | T

Packet Modifications + Packet Modifications
Egress Selection

source https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

Each architecture defines the metadata it supports,

including both standard and intrinsic ones

vimodel

more info

struct standard_metadata_t {

bit<9> ingress_port;
bit<9> egress_spec;
bit<9> egress_port;
bit<32> clone_spec;
bit<32> instance_type;
bit<1> drop;

bit<16> recirculate_port;
bit<32> packet_length;
bit<32> eng_timestamp;
bit<19> eng_qdepth;
bit<32> deg_timedelta;
bit<19> deqg_qgdepth;
error parser_error;

bit<48> ingress_global_timestamp;
bit<48> egress_global_timestamp;
bit<32> If_field_list;

bit<16> mcast_grp;

bit<32> resubmit_flag;

bit<16> egress_rid;

bit<1> checksum_error;

bit<32> recirculate_flag;

}

Each architecture also defines a list of "externs”,
i.e. blackbox functions whose interface is known

Most targets contain specialized components

which cannot be expressed in P4 (e.g. complex computations)

At the same time, P46 should be target-independent

In P414 almost 1/3 of the constructs were target-dependent

Think of externs as Java interfaces

only the signature is known, not the implementation

vimodel register<T> {
register(bit<32> size);
void read(out T result, in bit<32> indeXx);
void write(in bit<32> index, in T value);

random<T>(out T result, in T lo, in T hi);

hash<O, T, D, M>(out O result,
in HashAlgorithm algo, in T base, in D data, in M max);

update_checksum<T, O>(in bool condition,
in T data, inout O checksum, HashAlgorithm algo);

more info

architectures = # metadata & # externs

NetFPGA-SUME

more info

2 x SATA Micro-SD Expansion Interfaces Configuration

—

o : =
- " RS C \\7 .
4 x SFP+ =\ s =EWT BRDGE

s

N\
\\\\\\\\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\\\\\\\\X\\\ 3 x QDRI+

—\ Virtex 7 FPGA
- 2 xDDR3 PCle x8 Gen. 3
SoDIMM

Copyright © 2018 — P4.org 96

http://isfpga.org/fpga2018/slides/FPGA-201 8-P4-tutorial.pdf

P4->NetFPGA Compilation Overview

P4 Program

Xilinx P4,; Compiler

l

Xilinx SDNet Tools

SimpleSumeSwitch Architecture

NetFPGA Reference Switch

-

10GE
RxQ

-

10GE
RxQ

-

10GE
RxQ

-

10GE
RxQ

Input Arbiter

v

—

Parser Match-

action
pipeline

Deparser

A 4

© 2018 — P4.org

4,|

SimpleSume

Switch

v
5 H BB E

Output Queues

DMA

more info http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

Standard Metadata in SimpleSumeSwitch Architecture

/* standard sume switch metadata */
struct sume metadata t {
bit<16> dma q size;
bit<16> nf3 q size;
bit<16> nf2 q size;
bit<1l6> nfl q size;
bit<16> nf0_q size;
bit<8> send dig to cpu; // send digest data to CPU
bit<8> dst port; // one-hot encoded
bit<8> src port; // one-hot encoded

bit<16> pkt len; // unsigned int

** g size — size of each output queue, measured in terms of 32-byte words, when packet starts being
processed by the P4 program

*src_port/dst port — one-hot encoded, easy to do multicast

‘user metadatal/digest data — structs defined by the user

m Copyright © 2018 — P4.org 109

more info http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdf

P4->NetFPGA Extern Function library

* Implement platform specific functions
» Black box to P4 program

Implemented in HDL
Stateless - reinitialized for each packet
Stateful — keep state between packets

 Xilinx Annotations
¢ @Xilinx MaxLatency () —maximum number of clock cycles an extern function needs to
complete
* @Xilinx ControlWidth () —size in bits of the address space to allocate to an extern
function
m Copyright © 2018 — P4.org

more info

110

P4 P4 P4
environment language in practice

Deeper dive into
the language constructs (*)

(*) full info https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

#include <core.p4> : -
#include <vlmodel.p4> Libraries

const bit<l6> TYPE_IPV4 = 0x800;
typedef bit<32> ip4Addr_t;
header ipv4_t {..}

struct headers {..}

Declarations

parser MyParser(..) {
state start {..}

state parse_ethernet {..} Parse packet headers
state parse_ipv4 {..}

}

control MyIngress(..) {

action ipv4_forward(.) {..}

table ipv4_lpm {.} Control flow
apply { to modify packet
it D) {.}
}
Assemble
control MyDeparser(..) {..} o
viswitch(modified packet
MyParser(),
MyVerifyC?gcksum(),
MyIngress(), . . "
MyEgress(), main()
MyComputeChecksum(),
MyDeparser ()

) main;

But first, the basics:
data types, operations, and statements

P416 is a statically-typed language with

base types and operators to derive composed ones

bool
bit<w>
Tnt<w>
varbit<w>
match_kind

error

Boolean value

Bit-string of width W

Signed integer of width W

Bit-string of dynamic length <W

describes ways to match table keys

used to signal errors

no values, used in few restricted circumstances
not supported

not supported

P416 is a statically-typed language with
base types and operators to derive composed ones

Header

header Ethernet_h {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;

}

Ethernet_h
ethernetHeader;

Think of a header as a struct in C containing
the different fields plus a hidden "validity" field

header Ethernet_h { Parsing a packet using extract()

bit<48> dstAddr; o _
bl‘tz48i srcAddr: fills in the fields of the header

}b1t<16> etherType; from a network packet

A successful extract() sets to true
the validity bit of the extracted header

P416 is a statically-typed language with
base types and operators to derive composed ones

Header Header stack Header union
header Ethernet_h { header Mpls_h { header_union IP_h {
bit<48> dstAddr; bit<20> label; IPv4_h v4;
bit<48> srcAddr; bit<3> tc; IPV6_h v6;
bit<16> etherType; bit bos; }
1 }b1t<8> ttl;

Mpls_h[10] mpls;

Array of up to Either IPv4 or IPv6
10 MPLS headers header is present

P416 is a statically-typed language with
base types and operators to derive composed ones

Struct Tuple

Unordered collection Unordered collection

of named members of unnamed members

struct standard_metadata_t { tuple<bit<32>, bool> x;
bit<9> ingress_port; x = { 10, false };

bit<9> egress_spec;
bit<9> egress_port;

P416 is a statically-typed language with
base types and operators to derive composed ones

enum enum Priority {High, Low}
type specialization typedef bit<48> macAddr_t;
extern
parser
control

package

more info

P4 operations are similar to C operations and vary
depending on the types (unsigned/signed ints, ...)

arithmetic operations
logical operations

non-standard operations

x no division and modulo

more info

[m:1] Bit-slicing
++ Bit concatenation

(can be approximated)

Constants, variable declarations and instantiations
are pretty much the same as in C too

Variable bit<8> x = 123;

typedef bit<8> MyType;
MyType X;
X = 123;

Constant const bit<8> X = 123;
typedef bit<8> MyType;

const MyType x = 123;

more info

Variables have local scope and their values is

not maintained across subsequent invocations

to maintain state

variables cannot be used to maintain state
between different network packets

you can only use two stateful constructs

tables

extern objects

P4 statements are pretty classical too

more info

return

exit

Conditions

Switch

terminates the execution of the

action or control containing it

terminates the execution of all

the blocks currently executing

if (x==123) {.} else {.}

switch (t.apply().action_run) {
actionl: { ...}
action2: { ...}

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

45

AAAAAA

2

AAAAAA

4>

S

The parser uses a state machine to map ec%
packets into headers and metadata

Packet Headers and metadata

a:b:c:d — 1:2:3:4 <:f;j£%> meta {ingress_port: 1, ..}

1.2.3.4 - 56.7.8 ethernet {srcAddr: a:b:c:d, ..}

2>
ipv4d {srcAddr: 1.2.3.4, ..}
tcp {srcpPort: 12345, ..}

1234 — 56789

parser MyParser(..) {

state start {
transition parse_ethernet;

start }
state parse_ethernet {
l packet.extract(hdr.ethernet);
transition select(Chdr.ethernet.etherType) {
0x800: parse_ipv4;
parse_ethernet default: accept;
}
l }
state parse_ipv4 {
packet.extractChdr.ipv4);
parse_ipv4 transition select(hdr.ipv4.protocol) {

6: parse_tcp;

17: parse_udp;
¢/// \\\N default: accept;
}
}

state parse_tcp {

packet.extract(hdr.tcp);
& transition accept;
}

state parse_udp {
packet.extract(Chdr.udp);
transition accept;

}
}

parse_tcp parse_udp

accept reject

The last statement in a state is an (optional) transition,
which transfers control to another state

state start {

. Go directly to
transition parse_ethernet;
} parse_ethernet

state parse_ethernet {
packet.extract(hdr.ethernet); Next state depends on
transition select(Chdr.ethernet.etherType) {
0x800: parse_ipv4; etherType
default: accept;
}
}

Defining (and parsing) custom headers allow you
to implement your own protocols

A simple example for tunneling

£ Universitat
<) Zurich™

Irchel

A A
G i SO\ . og oo
“"il ™) Universi
g apNe
= z
Z <
S

m Ziirich

Honggerberg

Zentrum

header myTunnel_t {
bit<16> proto_id;
. bit<16> dst_id;

struct headers {

start ethernet_t ethernet;
myTunnel_t myTunnel;
l ipva_t ipvé4;
}

parse_ethernet parser MypParser(..) {

state start {..}

l state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
parse_myTunnel 0x1212: parse_myTunnel;
0x800: parse_ipv4;
z/ }defau1t: accept;
parse_ipv4 }

state parse_myTunnel {
packet.extractChdr.myTunnel);
transition selectChdr.myTunnel.proto_id) {
TYPE_IPV4: parse_ipv4;
}defau1t: accept;

accept reject }

state parse_ipv4 {..}

P4 parser supports both
fixed and variable-width header extraction

header IPv4_no_options_h {

B%£<32> srcAddr; : : :
bitease detaddr Fixed width fields
}

header IPv4_options_h { _ _ _
varbit<320> options; Variable width field
}

parser MyParser(..) {

é%éte parse_ipv4 {
packet.extract(headers.ipv4);
transition select (headers.ipv4.ihl) { . :
5: dispatch_on_protocol; ih1 determines length

default: parse_ipv4_options;

) of options field

state parse_ipv4_options {
packet.extract(headers.ipv4options,
(headers.ipv4.ihl - 5) << 2);
transition dispatch_on_protocol;
}
}

Parsing a header stack requires the parser to loop

Header stacks
for source routing

' " Packet

Packet

header srcRoute_t {
bit<l> bos;
bit<1l5> port;

start }
struct headers {
ethernet_t ethernet;
srcRoute_t [MAX_HOPS] srcRoutes;

parse_ethernet 1pva_t 1pvé;
}
l parser MyParser(...) {

state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_SRCROUTING: parse_srcRouting;
z/ default: accept;
}

arse ipv4
p _Ip }

parse_srcRouting

state parse_srcRouting {
packet.extract(hdr.srcRoutes.next);
transition select(hdr.srcRoutes.last.bos) {

1: parse_ipv4;
accept reject default: parse_srcRouting;

}

}

}

The parser contains more advanced concepts

verify error handling in the parser
lookahead access bits that are not parsed yet
sub-parsers like subroutines

more info https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

45

AAAAAA

2

AAAAAA

4>

S

Control

Tables

Actions

Control flow

match a key and return an action

similar to functions in C

similar to C but without loops

Tables match a key and return an action

Actions similar to functions in C

Control flow similar to C but without loops

Control Plane

Key

Pl

Match
Key

§|D

Action
Data

Headers
& Meta

Default

-+

Headers and
Metadata

Hit

DB Action

v

Code B

-1

Data Headers
& Meta

table {
key = {

}

actions = {

}

Size = .

default_action =

}

Table name

Field(s) to match

Match type

Possible actions

Max. # entries in table

Default action

Table name

table 1pv4_lpm {
key = {
hdr.ipv4.dstAddr: Tpm; Longest prefix match
¥

actions = {
ipv4_forward;
drop;

}

Destination IP address

Possible actions

size = 1024; Max. # entries in table

Default action

default_action = drop();
}

Tables can match on one or multiple keys
in different ways

Fields to match
table Fwd {
key = {
hdr.ipv4.dstAddr : ternary;
hdr.ipv4.version : exact;

Match kind

Match types are specified in the P4 core library
and in the architectures

exact

ternary

Tpm

range

exact comparison
0x01020304

compare with mask
0x01020304 & OxOFOFOFOF

longest prefix match
0x01020304/24

check if in range
0x01020304 — 0x010203FF

core.p4

— vlmodel.p4

] other
architecture

Table entries are added through
the control plane

Control Plane

table_add ipv4_lpm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1
table_add ipv4_lpm ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

1.2.3.0/24
5.6.7.0/24

Tables match a key and return an action

Actions similar to functions in C

Control flow similar to C but without loops

Actions are blocks of statements that
possibly modify the packets

Actions usually take directional parameters indicating
how the corresponding value is treated within the block

Directions can be of three types

in

out

Tnout

read only inside the action
like parameters to a function

uninitialized, write inside the action
like return values

combination of in and out
like “call by reference”

Let's reconsider a known example

action reflect_packet(inout bit<48> src,

inout bit<48> dst, Parameter
in bit<9> inPort, with direction
out bi1t<9> outPort
) {

bit<48> tmp = src;

src = dst;

dst = tmp;

outPort = inPort;

}

reflect_packet(hdr.ethernet.srcAddr,
hdr.ethernet.dstAddr,
standard_metadata.ingress_port,
standard_metadata.egress_spec

);

inout bit<48> src
inout bit<48>

in
out

bit<9>
bit<9>

reflect_packet

v

dst

inPort
outPort

\ 4

src
dst
inPort
outbPort

Actions parameters resulting from a table lookup do not
take a direction as they come from the control plane

Parameter
without direction

action set_egress_port(bit<9> port) {
standard_metadata.egress_spec = port;

}

Tables match a key and return an action

Actions similar to functions in C

Control flow similar to C but without loops

Interacting with tables
from the control flow

Applying a table
Tpv4_lpm.apply(

Checking if there was a hit

if Gpvda_lpm.apply(Q.hit) {...}
else {...}

Check which action was executed

switch (ipv4_lpm.apply() .action_run) {
ipvd4_forward: { ... }
}

Example: L3 forwarding with multiple tables

ipv4_Ipm forward
1.1.1.0 1 1 10
IP Packet 2.2.2.0 1 2 12
3.3.3.0 2 3 30
4.4.4.0 3
Map a prefix to Map a next hop index
a next hop index to an egress port

3330/24

1.1.1.0/24\@ 2.2.2.0/24

4440/24

Example: L3 forwarding with multiple tables

table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: 1pm;
}
actions = {
set_nhop_index;
drop;
NOAction;
}
size = 1024;
default_action = NoAction();

}

}

table forward {

key = {
meta.nhop_index: exact;

}

actions = {
_forward;
NOAcCtion;

}

size = 64;
default_action = NoAction();

Applying multiple tables in sequence

control MyIngress(...) {
action drop() {...}

action set_nhop_index(...}
action _forward(...}

table ipv4_1pm {...}

table forward {...}

apply {
if (hdr.ipv4.isvalid(O){

i

if (Gipv4_lpm.apply().hit)
forward.applyQ;
}

C

}

}
}

Check if IPv4 packet

Apply 1pv4_1pm table and
check if there was a hit

apply forward table

Validating and computing checksums

extern void verify_checksum<T, 0>(in bool condition,
in T data,
inout O checksum,
HashAlgorithm algo

);
vlimodel.p4

extern void update_checksum<T, 0>(in bool condition,
in T data,
inout O checksum,
HashAlgorithm algo

);

Re-computing checksums

control MyComputeChecksum(...) {
apply {
update_checksum(
hdr.ipv4.isvalidQ, pre-condition

{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags, fields list
hdr.ipv4.fragoffset,
hdr.ipv4.ttl,
hdr.1ipv4.protocol,
hdr.1ipv4.srcAddr,
hdr.ipv4.dstAddr },

hdr.ipv4.hdrchecksum, checksum field
HashAlgorithm.csuml6) ;
}

. algorithm

Control flows contain more advanced concepts

cloning packets

sending packets
to control plane

recirculating

create a clone of a packet

using dedicated Ethernet port,
or target-specific mechanisms
(e.g. digests)

send packet through pipeline
multiple times

more info https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

Match-Action Pipeline Deparser

Parser

4>

AAAAAA

45

AAAAAA

2

AAAAAA

4>

S

Headers Deparser

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} 0>

tcp {srcPort: 12345, ..}

control MyDeparser(...) {
apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);
packet.emit(hdr.tcp);

Packet

a:b:c:d = 1:2:3:4

1.2.3.4 - 5.6.7.8

1234 — 56789

"Full circle”

P4 Program -—> Compiler Control Plane

Architecture Model CPU port I I

> Data Plane Tables Externs

target-specific
binary

User supplied

Vendor supplied

P4 P4 P4
environment language in practice

in-network
obfuscation

Advanced Topics in Communication Networks

Programming Network Data Planes

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zirich
Sep 27 2018

