
Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Alexander Dietmüller

Oct. 11 2018

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch/

2

Last week on

Advanced Topics in Communication Networks

3

Probabilistic data structures like Bloom Filters

help to trade resources with accuracy

1

0

0

0

0

1

0

0

1

0

hash_a(“Hello”)

hash_b(“Hello”)

hash_c(“Hello”)

INSERT
“Hello”

Recap

QUERY
“Hello”

hash_a(“Hello”)

hash_b(“Hello”)

hash_c(“Hello”)

4

Bloom Filters take a fixed number of operations,

but hash collisions can cause false positives.

1

0

0

0

0

1

0

0

1

0

hash_a(“Hello”)

hash_b(“Hello”)

hash_c(“Hello”)

INSERT
“Hello”

Recap

QUERY
“Hello”

hash_a(“Hello”)

hash_b(“Hello”)

hash_c(“Hello”)

5

Bloom Filters take a fixed number of operations,

but hash collisions can cause false positives

1

0

0

0

0

1

0

0

1

0

hash_a(“Hello”)

hash_b(“Hello”)

hash_c(“Hello”)

INSERT
“Hello”

QUERY
“Bye”

hash_a(“Bye”)

hash_c(“Bye”)

hash_b(“Bye”)

Recap

6

A bloom filter is a streaming algorithm

answering specific questions approximately.

Recap

7

A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

Recap

8

A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

What about other questions?

9

Today we’ll talk about: important questions,

how ‘sketches’ answer them,

and limitations of ‘sketches’

my master thesis :)

10

Is a certain flow in the stream?

Bloom Filter

How frequent does an flow appear?

Count Sketch, CountMin Sketch, ...

How many flows belong to a certain subnet?

SketchLearn SigComm ‘18

What flows are in the stream?

Invertible Bloom Filter, HyperLogLog Sketch, ...

What are the most frequent elements?

Count/CountMin + Heap, …

11

In networking, we talk about flows of packets,

but these questions apply to other domains as well,

e.g. search engines and databases.

12

What are the most frequent elements?

Count/CountMin + Heap, …

Is a certain flow in the stream?

Bloom Filter

How frequently does an flow appear?

Count Sketch, CountMin Sketch, ...

How many flows belong to a certain subnet?

SketchLearn SIGCOMM ‘18

What flows are in the stream?

Invertible Bloom Filter, HyperLogLog Sketch, ...

13

We are going to look at frequencies,

i.e. how often an element occurs in a data stream.

vector of frequencies (counts)

of all distinct elements xi

x=[
x1
x2
⋮

]

14

We are going to look at frequencies,

i.e. how often an element occurs in a data stream.

vector of frequencies (counts)

of all distinct elements xi

x=[
x1
x2
⋮

]
distinct flows

15

In the worst case, an algorithm providing

exact frequencies requires linear space.

16

In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

17

In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

→ n distinct elements

(in the worst case)

18

In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

→ n distinct elements

(in the worst case)

→ n counters required? :(

19

Bloom Filters
quickly “filter” only those

elements that might be in

the set

Save space by allowing

false positives.

Probabilistic datastructures can help again!

20

Bloom Filters
quickly “filter” only those

elements that might be in

the set

Save space by allowing

false positives.

Sketches
provide a approximate

frequencies of elemetns

in a data stream.

Save space by allowing

mis-counting.

Probabilistic datastructures can help again!

21

Today we’ll talk about: important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)

22

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

23

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

x=[
x1
x2
⋮]

Notation reminder:

vector of frequencies (counts)

of all distinct elements xi

24

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

25

Pr [x̂ i
estimated
frequency

− x i
true

frequency

≥ ε‖x‖1
sum of
frequencies

]≤δ

The estimation error exceeds

with a probability smaller than

ε‖x‖1
δ

26

Pr [x̂ i
estimated
frequency

− x i
true

frequency

≥ ε‖x‖1
sum of
frequencies

]≤δ

relative to L1 norm

The estimation error exceeds

with a probability smaller than

ε‖x‖1
δ

27

Pr [x̂ i
estimated
frequency

− x i
true

frequency

≥ ε‖x‖1
sum of
frequencies

]≤δ

Let ε=0.01, δ=0.05, ‖x‖1=10000

The probability for any estimate to be

off by more than 100 is less than 5%
(after counting 10000 elements)

28

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

29

A CountMin Sketch uses multiple arrays and hashes.

 "

w indices
per array
(range of hashes)

6 "

d arrays
(one hash function per array)

w⋅d counters
(total size)

counters

30

xa+1
hash_a
(“Hello”)

hash_c
(“Hello”)

COUNT
“Hello”

xc+1

xb+1
hash_b
(“Hello”)

31

Hash collisions cause over-counting.

xa +...
hash_a
(“Hello”)

hash_c
(“Hello”)

xc +...

xb +...
hash_b
(“Hello”)

hash_a
(“Test”)
hash_a
(“Net”)

hash_b
(“Bye”)
hash_b
(“UDP”)
hash_b
(“FUBAR”)

hash_c
(“TCP”)

32

Returning the minimum value minimizes the error.

xa

hash_a
(“Hello”)

hash_c
(“Hello”)

QUERY
“Hello”

xc

xb

hash_b
(“Hello”)

return
min(xa,xb,xc)

33

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

Pr [x̂i
estimated
frequency

− xi
true

frequency

≥ ε‖x‖1
sum of
frequencies

]≤δ

34

Understanding the error bounds allows

dimensioning the sketch optimally.

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

35

x̂ i
estimated
frequency

= min
h∈h1 .. hd

x̂i
h

estimate for
specific hash

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

36

x̂ i
estimated
frequency

= min
h∈h1 .. hd

x̂i
h

estimate for
specific hash

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

37

Pr [X≥ c⋅E [X]]≤
1
c

The error bounds can be derived

with Markov’s Inequality

wikipedia.org/wiki/Markov's_inequality

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

https://en.wikipedia.org/wiki/Markov's_inequality

38

The error bounds can be derived

with Markov’s Inequality

wikipedia.org/wiki/Markov's_inequality

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

https://en.wikipedia.org/wiki/Markov's_inequality

39

x̂i
h
= x i + ∑

x j≠ xi

x j 1h (xi , x j)

true
frequency

over-counting
from hash collisions

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

40

={1, if h (x i)=h (x j)
0, otherwise

x̂i
h
= x i + ∑

x j≠ xi

x j 1h (xi , x j)

hash collision

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

41

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

estimation
error

over-counting
from hash collisions

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

42

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

E [x̂ i
h
− xi] = E [∑x j≠ x i

x j 1h (xi , x j)]

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

43

E [x̂ i
h
− xi] = E [∑x j≠ x i

x j 1h (xi , x j)]

We treat the data as a constant and the

hash as a random function with certain properties.

constant
random

wikipedia.org/wiki/Universal_hashing

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

https://en.wikipedia.org/wiki/Universal_hashing

44

E [x̂ i
h
− xi] = ∑

x j≠ xi

x j E [1h (x i , x j)]

wikipedia.org/wiki/Universal_hashing

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

We treat the data as a constant and the

hash as a random function with certain properties.

https://en.wikipedia.org/wiki/Universal_hashing

45

E [x̂ i
h
− xi] = ∑

x j≠ xi

x j E [1h (x i , x j)]⏟
≤
1
w

wikipedia.org/wiki/Universal_hashing

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

We treat the data as a constant and the

hash as a random function with certain properties.

https://en.wikipedia.org/wiki/Universal_hashing

46

E [x̂i
h
− xi] ≤ ∑

x j≠ x i

x j
1
w

wikipedia.org/wiki/Universal_hashing

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

We treat the data as a constant and the

hash as a random function with certain properties.

https://en.wikipedia.org/wiki/Universal_hashing

47

E [x̂i
h
− xi] ≤ ∑

x j≠ x i

x j
1
w

≤ ∑
x j

x j
1
w

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

48

E [x̂i
h
− xi] ≤ ∑

x j≠ x i

x j
1
w

≤ ‖x‖1
1
w

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

x̂i
h
− xi = ∑

x j≠ x i

x j 1h (x i , x j)

Pr [x̂i
h
− x i≥c⋅E [x̂ i

h
− x i]]≤

1
c

49

Pr [x̂i
h
− x i≥c⋅E [x̂i

h
− xi]⏟

≤
1
w

‖x‖1

]≤
1
cError Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

50

Pr [x̂i
h
− x i≥

c
w

‖x‖1]≤
1
cError Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

51

Pr [x̂i
h
− x i≥ ε

h
⏟
c
w

‖x‖1]≤ δ
h

⏟
1
c

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

52

The estimate for each hash has

a well defined L1 error bound.

Pr [x̂i
h
− x i≥ ε

h
⏟
c
w

‖x‖1]≤ δ
h

⏟
1
c

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

53

The estimate for each hash has

a well defined L1 error bound.

What about the minimum?

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂i
h
− x i≥ ε

h
⏟
c
w

‖x‖1]≤ δ
h

⏟
1
c

54

Pr [x̂ i− x i≥
c
w

‖x‖1] ≤ ?

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

55

Pr [min
h∈h1 .. hd

x̂ i
h

⏟
x̂ i

− xi≥
c
w

‖x‖1] ≤ ?

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

56

∏
h∈h1 .. hd

Pr [x̂ i
h
− x i≥

c
w

‖x‖1] ≤ ?

Multiple hash functions work like independent trials.

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [min
h∈h1 .. hd

x̂ i
h

⏟
x̂ i

− xi≥
c
w

‖x‖1] ≤ ?

⇔

57

∏
h∈h1 .. hd

Pr [x̂ i
h
− x i≥

c
w

‖x‖1]
⏟

≤
1
c

≤ ?

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

error bound per hash

Pr [min
h∈h1 .. hd

x̂ i
h

⏟
x̂i

− xi≥
c
w

‖x‖1] ≤ ?

⇔

58

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

∏
h∈h1 .. hd

Pr [x̂ i
h
− x i≥

c
w

‖x‖1]
⏟

≤
1
c

≤
1

cd

Pr [min
h∈h1 .. hd

x̂ i
h

⏟
x̂i

− xi≥
c
w

‖x‖1] ≤ ?

⇔

59

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [min
h∈h1 .. hd

x̂ i
h

⏟
x̂i

− xi≥
c
w

‖x‖1] ≤
1

cd

60

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂ i− x i≥
c
w

‖x‖1] ≤
1

cd

61

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

Pr [x̂ i− x i≥ ε⏟
c
w

‖x‖1]≤ δ⏟
1
cd

We have proven the error bounds!

But what about the constant c?

62

For every c, there is a pair () achieving

the error bound and confidence ().ε ,δ
d ,w

ε=
c
w

⇒ w= ⌈ cε ⌉

δ=
1

cd
⇒ d=⌈ logc 1δ ⌉

(hash range)

(#hashes)

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

63

Choosing c=e minimizes the

total number of counters.

ε=
e
w

⇒ w= ⌈ eε ⌉

δ=
1

ed
⇒ d= ⌈ ln 1δ ⌉

d⋅w=
c
ε logc

1
δ

=
minimize e

ε ln
1
δ

(hash range)

(#hashes)

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

64

A CountMin sketch recipe

w= ⌈ eε ⌉

d= ⌈ ln 1δ ⌉

(hash range)

(#hashes)

Given , choosing

requires the minimum number of

counters s.t. the CountMin Sketch

can guarantee that

x̂i− xi≥ε‖x‖1
with a probability less than δ

ε ,δ

Error Bounds

per hash/array

Optimal Size

Error Bounds

for the minimum

65

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

66

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

CountMin sketch recipe

Choose d= ⌈ ln 1δ ⌉ , w= ⌈eε ⌉

Then x̂i− x i≥ε‖x‖1 with a probability less than δ

67

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

→ only one design out of many!

68

A Count sketchMin uses the same principles as a

counting bloom filter, but is designed to have

provable L2 error bounds for frequency queries.

69

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.

CountMin sketch

h
1
, …, h

d
: U → {1, …, w}

COUNT x
i:

for h in h
1
, …, h

d
:

Reg
h
[h(x

i
)] + 1

QUERY x
i
:

return min
h in h1, …, hd

(

Reg
h
[h(x

i
)]

)

70

CountMin sketch

h
1
, …, h

d
: U → {1, …, w}

COUNT x
i:

for h in h
1
, …, h

d
:

Reg
h
[h(x

i
)] + 1

QUERY x
i
:

return min
h in h1, …, hd

(

Reg
h
[h(x

i
)]

)

Count sketch

h
1
, …, h

d
: U → {1, …, w}

g: U → {+1, -1}

COUNT x
i:

for h in h
1
, …, h

d
:

Reg
h
[h(x

i
)] + g(x

i
)

QUERY x
i
:

return median
h in h1, …, hd

 (

Reg
h
[h(x

i
)] * g(x

i
)

)

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.

71

CountMin sketch recipe

Choose d= ⌈ ln 1δ ⌉ , w= ⌈eε ⌉

Then x̂i− x i≥ε‖x‖1 with a probability less than δ

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.

72

CountMin sketch recipe

Choose d= ⌈ ln 1δ ⌉ , w= ⌈eε ⌉

Then x̂i− x i≥ε‖x‖1 with a probability less than δ

Count sketch recipe

Choose d= ⌈ ln 1δ ⌉ , w=⌈eε2 ⌉
Then x̂i− x i≥ε‖x‖2 with a probability less than δ

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.

Sketches are the new black

OpenSketch

NSDI ‘13

UnivMon

SIGCOMM ‘16

SketchLearn

SIGCOMM ‘18

...and many more!

[source] [source] [source]

https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf

Sketches are the new black

OpenSketch

NSDI ‘13

UnivMon

SIGCOMM ‘16

SketchLearn

SIGCOMM ‘18

[source] [source][source]

https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf

75

SketchLearn combines multiple sketches with

elaborate post-processing for flexibility

76

Today we’ll talk about: important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)

77

Sketches compute statistical summaries,

favoring elements with high frequency.

Pr [x̂i− x i
estimation
error

≥ε‖x‖1]≤δ
relative to sum
of all elements

78

Sketches compute statistical summaries,

favoring elements with high frequency.

Let ε=0.01, ‖x‖1=10000 (⇒ ε⋅‖x‖1=100)

Assume two flows xa , xb ,

with ‖xa‖1=1000, ‖xb‖1=50

high frequency

low frequency

79

Sketches compute statistical summaries,

favoring elements with high frequency.

Let ε=0.01, ‖x‖1=10000 (⇒ ε⋅‖x‖1=100)

Assume two flows xa , xb ,

with ‖xa‖1=1000, ‖xb‖1=50

Error relative to stream size: 1%

80

Sketches compute statistical summaries,

favoring elements with high frequency.

Error relative to stream size: 1%

flow size: xa: 10%, xb: 200%

Let ε=0.01, ‖x‖1=10000 (⇒ ε⋅‖x‖1=100)

Assume two flows xa , xb ,

with ‖xa‖1=1000, ‖xb‖1=50

81

Other Problems a Sketch can’t handle

causality patterns rare things

82

Regardless of their limitations, sketches provide

trade-offs between resources and error, and

provable guarantees to rely on.

83

Today we’ll talk about: important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)

84

Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Alexander Dietmüller

Oct. 11 2018

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch/

