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Bloom Filters

trade resources with accuracy
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Bloom Filters take a fixed number of operations,
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Bloom Filters take a fixed number of operations,

but hash collisions can cause false positives
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answering specific questions approximately
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A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X'in the stream?
What iS N the Stream?lnvertible Bloom Filter



A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X In the stream?
What iS in the Stream?lnvertible Bloom Filter

What about other questions?



loday we'll talk about: important questions,
how ‘sketches’ answer them,
and limitations of ‘sketches’

my master thesis :)



Is a certain flow in the stream?
Bloom Filter

What flows are in the stream?
Invertible Bloom Filter, HyperLoglLog Sketch, ...

How frequent does an flow appear?
Count Sketch, CountMin Sketch, ...

What are the most frequent elements?
Count/CountMin + Heap, ...

How many flows belong to a certain subnet?
SketchlL.earn sgcomm ‘18




In networking, we talk about flows of packets,
but these questions apply to other domains as well,

e.qg. search engines and databases.



Is a certain flow Iin the stream?
Bloom Filter

What flows are in the stream?
Invertible Bloom Filter, HyperLoglLog Sketch, ...

How frequently does an flow appear?
Count Sketch, CountMin Sketch, ...

What are the most frequent elements?
Count/CountMin + Heap, ...

How many flows belong to a certain subnet?
Sketchl.earn S'Gcomm ‘18
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We are going to look at frequencies,

l.e. how often an element occurs in a data stream.

vector of frequencies (counts)

of all distinct elements Xx,




We are going to look at frequencies,

.e. how often an element occurs in a data stream.

vector of frequencies (counts)

of all distinct elements x,

distinct flows
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In the worst case, an algorithm providing

exact frequencies requires linear space.



In the worst case, an algorithm providing

exact frequencies requires linear space.
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> Data Stream

n elements in total
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In the worst case, an algorithm providing

exact frequencies requires linear space.

~
i

Data Stream
= > h elements in total
E - n distinct elements
= p (in the worst case)
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In the worst case, an algorithm providing

exact frequencies requires linear space.

'\

.

Data Stream

h elements in total

- nh distinct elements
(In the worst case)

- n counters required? :(
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Probabilistic datastructures can help again!

Bloom Filters

Save space by allowing
false positives.



Probabilistic datastructures can help again!

Bloom Filters Sketches

Save space by allowing Save space by allowing

false positives. mis-counting.



Today we’ll talk about: important questions,
how ‘sketches’ answer them,
limitations of ‘sketches’,

and my master thesis :)



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.




A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.
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Prl x. — x. =¢|x|,|<9

i i
estimated true sum of

frequency  frequency  frequencies

The estimation error exceeds ¢||x||,

with a probability smaller than 6



relative to L1 norm

Pr| x. — x. =¢l|x|, |9

i i
estimated true sum of
frequency  frequency  frequencies

The estimation error exceeds ¢||x||,

with a probability smaller than 6



Prl x, — x;, =e¢|x|,]<06

i i
estimated true sum of

frequency  frequency  frequencies

Let £=0.01, 8=0.05, |x||,=10000

The probability for any estimate to be
off by more than 100 is less than 5%

(after counting 10000 elements)



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.
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A CountMin Sketch uses multiple arrays and hashes.

counters > } windices
\\: per array
(range of hashes)
y
< 6 o]
darrays w-d counters

(one hash function per array ) (total size)
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Hash collisions cause over-counting.

hash_c
(HTCPH)

hash_a

(“Test”)

hash_a

(“Net”)

_»

—» | X®+... | hash_b
(“Bye!!)
hash_b
(“UDPH)
hash_b
(*“FUBAR”)
_»

— | x"+...




Returning the minimum value minimizes the error.

» QUERY

return
min(x2, x?, x<)



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds ior frequency queries,

Pri x, — x, =c¢l|x||,]<06

i i
estimated true sum of

frequency  frequency  frequencies
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Understanding the error bounds allows
dimensioning the sketch optimally.

Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size



Error Bounds

per hash/array
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Error Bounds
per hash/array

Error Bounds

for the minimum

Optimal Size
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The error bounds can be derived
with Markov’s Inequality

PriX>c-E|X]||<

Error Bounds

1
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per hash/array


https://en.wikipedia.org/wiki/Markov's_inequality

The error bounds can be derived
with Markov’s Inequality

Error Bounds

per hash/array


https://en.wikipedia.org/wiki/Markov's_inequality

Error Bounds

per hash/array



Error Bounds

per hash/array

|1, if h(x)=h{x))
|0, otherwise



Error Bounds
per hash/array

Error Bounds

for the minimum

Optimal Size
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Error Bounds

per hash/array
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We treat the data as a constant and the
hash as a random function with certain properties.
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random
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https://en.wikipedia.org/wiki/Universal_hashing

We treat the data as a constant and the
hash as a random function with certain properties.
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https://en.wikipedia.org/wiki/Universal_hashing

We treat the data as a constant and the
hash as a random function with certain properties.
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https://en.wikipedia.org/wiki/Universal_hashing

We treat the data as a constant and the
hash as a random function with certain properties.

Error Bounds

per hash/array
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Error Bounds
per hash/array
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for the minimum
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Error Bounds
per hash/array
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Error Bounds

The estimate for each hash has

a well defined L1 error bound.



Prix'—x> ¢&" ||x||,]< o"
—_— —_—
per hash/array c %
w

Error Bounds

The estimate for each hash has

Error Bounds

- a well defined L1 error bound.
for the minimum

What about the minimum?

Optimal Size
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Error Bounds

for the minimum



Error Bounds

per hash/array
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Multiple hash functions work like independent trials.
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Error Bounds

per hash/array

Error Bounds
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Error Bounds

for the minimum




Error Bounds

for the minimum
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Error Bounds

for the minimum
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Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size
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We have proven the error bounds!

But what about the constant c?



For every c, there is a pair (d,w) achieving
the error bound and confidence ( &,0).
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Choosing c=e minimizes the
total number of counters.
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A CountMin sketch recipe

Given £,0, choosing

e
W=|T

1

d= lns

requires the minimum number of
counters s.t. the CountMin Sketch

can guarantee that

Optimal Size R
X, — x> e|x|,

with a probability less than O



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

CountMin sketch recipe

|

Then X, — x.=> ¢||x||, with a probability less than 6

|
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A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.

- only one design out of many!



A Count sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L2 error bounds for frequency queries.



The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources.

CountMin sketch

h, .., hy: u- {1, .., w}
COUNT X..
for h in h,, .., h;:

Reg [h(x))] + 1

QUERY X, :

return m1 rlh in hl, .., hd(

Reg, [h(x,)]



The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources.

CountMin sketch

h, .., hg: u - {1, .., w}
COUNT X,
for h in h,, .., h;:

Reg [h(x))] + 1

QUERY X, :

return m1 rlh in hl, .., hd(

Reg, [h(x,)]

Count sketch

h, .., hyg: u - {1, .., w}
g: u - {+1, -1}
COUNT X..

for h in h;, .., h;:

Reg, [h(x,)] + g(x,)

QUERY X.:

return median, . hi, ., hd (

Reg, [h(x.)] * g(x.)



The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources.

CountMin sketch recipe

lng—

™| 0

Choose d= , W=

Then  x,— x,= ¢||x||, with a probability less than 6



The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources.

CountMin sketch recipe

lng—

™| 0

Choose d= , W=

Then  x,— x,= ¢||x||, with a probability less than 6

Count sketch recipe
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Then  X.—x.=> ¢||x||, with a probability less than



Sketches are the new black

...and many more!

SketchlLearn
SIGCOMM ‘18

UnivMon
SIGCOMM ‘16

OpenSketch
NSDI ‘13
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One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference

Software Defined Traffic Measurement with OpenSketch Qun Huang', Patrick P. C. Lee®, and Yungang Bao'
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- i< multicfaceted source requirements in the face of massive network traffic.
Network management requires accurate estimates of met- Network. is and a g N "

Abstract

Most network management tasks in software-defined
networks (SDN) involve two stages: and

work management, it
a new d
key challenge is to strike a careful balance between gen-

mportant to design and build
i The

control. While many efforts have been focused on net=
work control APIs for SDN. litlle attention gocs into
measurement. The key challenge of designing a new
‘measurement API is to strike a careful balance between
generality (supporting a wide variety of measurement
tasks) and efficiency (enabling high link speed and low
cost). We propose a software defined traffic measure-
‘ment architecture OpenSketch, which separates the mea-
surement data plane from the control plane. In the
data plane, OpenSketch provides a simple three-stage
pipeline (hashing, filtering, and counting), which can be

with switch and
support many measurement tasks. In the control plane,
OpenSketch provides a measurement library that auto-
‘matically configures the pipeline and allocates resources
for different measurement tasks. Our evaluations of real-
world packet traces. our prototype on NetFPGA. and
the implementation of five measurement tasks on top of
OpenSketch, demonstrate that OpenSketch is general, ef-
ficient and easily programmable.

1 Introduction

Recent advances in software-defined (SDN)

erality a wide variety of tasks)
and efficiency (cnabling high link speed and low cost).
Flow-based measurements such as NetFlow [2] and
sFlow [42] provide generic support for different mea-
surement tasks, but consume 100 resources (e.g.. CPU,
memory, bandwidth) [28. 18, 19]. For example. o iden-
tify the big fows whose byte volumes are above a thresh=
old (ie.. heavy hitter detection which is important for
traffic engineering in data centers [6]), NetFlow collects
flow-level counts for sampled packets in the data plane.
A high sampling rate would lead to too many counters,
while a lower sampling rate may miss fows. While there
are many NetFlow improvements for specific measure-
ment tasks (e.g.. [48, 19]), a different measurement task
may need to focus on small flows (c.g., anomaly detec-
tion) and thus requiring another way of changing Net-
Flow. Instead, we should provide more customized and

y liection defined by the soft-
ware writien by operators based on the measurement re-
i and provide on the

accuracy.

As an alternative, many skerch-based streaming algo-
rithms have been proposed in the theoretical research
community [7, 12, 46, 8, 20, 47], which provide efficient

have improved network Net-
work management involves two important stages: (1)
‘measuring the network in real time (e.g., identifying traf-
fic anomalies or large traffic aggregates) and then (2)
adjusting the control of the network accordingly (e.g..
routing, access control. and rate limiting). While there
have been many efforts on designing the right APIs for
network control {e.g., OpenFlow [29], ForCES [1], rule-
based forwarding [33], etc.). little thought has gone into
designing the right APIs for measurement.

support for individual management tasks.
However, these algorithms arc not deployed in practice
because of their lack of generality: Each of these algo-
rithms answers just one question or produces just one
statistic (e.g.. the unique number of destinations). so it
is 00 expensive for vendors to build new hardware to
support cach function. For example, the Space-Saving
heavy hitter detection algorithm [8] maintains a hash ta-
ble of items and counts, and requires customized opera-
tions such as keeping a pointer to the item with minimum
counts and replacing the minimum-count entry with a

rics for many applications including traffic engincering (e.g..
heavy hitters), anomaly detection {c.g., entropy of source
addresses), and security (e.g.. DDoS detection). Obtain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fidelity general-
purposc approaches such as sam i

but complex algorithms customized to specific application-
level metrics. Ideally, a solution should be both general
(i.c., supports many applications) and provide accuracy com=
parable to custom algorithms. This paper presents Univ-
Mon, a framework for flow monitoring which leverages re-
cent theoretical advances and demonstrates that it is possible
to achieve both generality and high accuracy. UnivMon uses
an application-agnostic data plane monitoring primitives; dif-
ferent (and possibly unforescen) estimation algorithms run
in the control plane, and use the statistics from the data planc
to compute application-level metrics. We present a proof-
of-concept implementation of UnivMon using P4 and de-
velop simple coordination techniques to provide a “one-big-
switch” abstraction for network-wide monitoring. We eval-
uate the effectiveness of UnivMon using a range of trace-
driven cvaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
lutions across a range of monitoring tasks

CCS Concepts

eNetworks — Network monitoring
‘ment;

; Network measure-
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range of tasks including traffic engincering [11,32], attack
and anomaly detection [49], and forensic analysis [46]. Each
such management task requires accurate and timely statis
tics on different application-level metrics of interest: e.g.. the
flow size distribution [37], heavy hitters [10], entropy mea-
sures [38,50], or detecting changes in traffic patterns [44].

Ata high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
relies on generic flow monitoring typically with some form
of packet sampling (c.g.. NetFlow [25]). While generic flow
monitoring is good for coarse-grained visibility, prior work
has shown that it provides low accuracy for more fine-grained
metrics [30.31.43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
skeiching or streaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
rics of interest that can yield provable resource-accuracy trade-
offs (e.g.. [17.18,20,31,36,38,43]).

While the body of work in data streaming and sketching
has made significant contributions, we argue that this trajec-
tory of crafting special-purpose algorithms is untenable in
the long term. As the number of monitoring tasks grows, this
cntails significant investment in algorithm design and hard-
ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide librarics to
reduce the implementation cffort and offer cfficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resources
have to be committed (a priori) to a specific set of metrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.

Ideally, we want a monitoring framework that offers both
generality by delaying the binding to specific applications
of interest but at the same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity simultaneously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [43]

In this paper. we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultancously achieve
both generality and high fidelity across a broad spectrum of
monitoring tasks [31, 36, 38, 51]. UnivMon builds on and

can for 1
sousce savings, i aterud forts Lo confige

1 INTRODUCTION

ure the right fsin real

Netwark to modern network

is
Jouds and data cent

Such user burdens are cansed by how existing approximate
inherently deal with

flicts when tracking massive network traffic with limited
resources. In particular, they tightly couple resource confige
urations with accuracy parameters, so as to provision suffi-
cient resources to bound the measurement errors. We design
SketchLearn, a novel sketch-based measurement framevork
that resalves resource conflicts by learning their statistical
properties to climinate conflicting traffic components. We
prototype SketchLeam on OpenVSwitch and P4, and our
testbed experiments and stresstest simulation show that
SketchLearn accurately and automatically monitors various
traffic statistics and effectively supports network-wide mea-
surement with limited resources.
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Abstract

Most network management tasks in software-defined
networks (SDN) involve two stages: and

work managemment, it s importaat o design and build
a new soft il The

key challenge is to strike a careful balance between gen-

control. While many efforts have been focused on net=
work control APIs for SDN. litlle attention gocs into
measurement. The key challenge of designing a new
‘measurement API is to strike a careful balance between
generality (supporting a wide variety of measurement
tasks) and efficiency (enabling high link speed and low
cost). We propose a software defined traffic measure-
‘ment architecture OpenSketch, which separates the mea-
surement data plane from the control plane. In the
data plane, OpenSketch provides a simple three-stage
pipeline (hashing, filtering, and counting), which can be

with switch and
support many measurement tasks. In the control plane,
OpenSketch provides a measurement library that auto-
matically configures the pipeline and allocates resources
for tasks. Our it of real-
world packet traces. our prototype on NetFPGA. and
the implementation of five measurement tasks on top of
OpenSketch, demonstrate that OpenSketch is general, ef-
ficient and easily programmable.

1 Introduction

Recent advances in software-defined (SDN)

erality a wide variety of tasks)
and efficiency (cnabling high link speed and low cost).
Flow-based measurements such as NetFlow [2] and
sFlow [42] provide generic support for different mea-
surement tasks, but consume 100 resources (e.g.. CPU,
memory, bandwidth) 28, 18, 19]. For example, to iden~
tify the big fows whose byte volumes are above a thresh=
old (ie.. heavy hitter detection which is important for
traffic engineering in data centers [6]), NetFlow collects
flow-level counts for sampled packets in the data plane.
A high sampling rate would lead to too many counters.
while a lower sampling rate may miss fows. While there
are many NetFlow improvements for specific measure-
ment tasks (e.g.. [48, 19]), a different measurement task
may need to focus on small flows (c.g., anomaly detec-
tion) and thus requiring another way of changing Net-
Elow. Instcad, we should provide more cusiomized and
» e defined by the soft-
ware writien by operators based on the measirement re-
and provide the

accuracy.

As an alternative, many skerch-based streaming algo-
rithms have been proposed in the theoretical research
community [7, 12, 46, 8, 20, 47], which provide efficient

have significantly improved network management. Net-
work management involves two important stages: (1)
‘measuring the network in real time (c.g., identifying traf~
fic anomalies or large traffic aggregates) and then (2)
adjusting the control of the network accordingly (e.g..
routing, access control, and rate limiting). While there
have been many efforts on designing the right APIs for
network control (e.g., OpenFlow [29], ForCES [1], rule-
based forwarding [33], etc.). little thought has gone into
designing the right APIs for measurement. Since con-

support for individual management tasks.
However, these algorithms arc not deployed in practice
because of their lack of generality: Each of these algo-
rithms answers just one question or produces just one
statistic (e.g.. the unique number of destinations). so it
is 00 expensive for vendors to build new hardware to
support cach function. For example, the Space-Saving
heavy hitter detection algorithm [8] maintains a hash ta-
ble of items and counts, and requires customized opera-
tions such as keeping a pointer to the item with minimum
counts and replacing the minimum-count entry with a

ABSTRACT

Network management requires accurate estimates of met-
ries for many applications including traffic engineering (e.g.,
heavy hitiers), anomaly delection (e.g.. entropy of source
addresses), and security (e.g.. DDoS detection). Obtain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fidelity general-
purposc approaches such as sampling, or (2) high fidelity
but complex algorithms customized to specific application-
level metrics. Ideally, a solution should be both general
{i.c., supports many applications) and provide accuracy come
parable to custom algorithms. This paper presents Univ-
Mon, a framework for flow monitoring which leverages re-
cent theoretical advances and demonstrates that it is possible
to achieve both generality and high aceuracy. UnivMon uses
an application-agnostic data plane monitering primitive; dif-
ferent (and possibly unforeseen) estimation algorithms run
inthe control plane, and use the statistics from the data plane
to compute application-level metrics. We present a proof-
of-concept implementation of UnivMon using P4 and de-
welop simple coordination techniques to provide a “one-big-
switch” abstraction for network-wide monitoring. We eval-
uate the effectiveness of UnivMon using a range of trace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
Iutions across a range of monitoring tasks.
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1 Introduction

Network is multi-faceted and a
range of tasks including traffic engincering [11,32], attack
and anomaly detection [49], and forensic analysis [46]. Each
such management task requires accurate and timely statis-
tics on different application-level metrics of interest: e.g.. the
flow size distribution [37], heavy hitters [10], entropy mea-
sures [38,50], or detecting changes in traffic patterns [44].

Ata high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
relies on generic flow monitoring. typically with some form.
of packet sampling (c.g.. NetFlow [25]). While generic flow
monitoring is good for coarse-grained visibility, prior work
has shown that it provides low accuracy for more fine-grained
metrics [30.31.43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
skeiching or streaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
rics of interest that can yield provable resource-accuracy trade-
offs (e.g.. [17.18,20,31,36,38,43]).

While the body of work in data streaming and sketching
has made significant contributions, we argue that this trajec-
tory of crafting special-purpose algorithms is untenable in
the long term. As the number of monitoring tasks grows, this
entails significant investment in algorithm design and hard-
ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide librarics to
reduce the implementation cffort and offer cfficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resources
have to be committed (a priori) to a specific set of metrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.

Ideally, we want a monitoring framework that offers both
generality by delaying the binding to specific applications
of interest but at the same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity simultaneously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [43]

In this paper. we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultancously achieve
both generality and high fidelity across a broad spectrum of
monitoring tasks [31, 36, 38, 51]. UnivMon builds on and

ABSTRACT

Network measurement is challenged to fulfill stringent re-
source requirements in the face of massive network traffic.
While i can trad or re-
source savings, it demands ntersive manual :ﬁuns 1o config-
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measurement approaches inherently deal with resource con-
flicts when tracking massive network traffic with limited
resources. In particular, they tightly couple resource config-
urations with accuracy parameters, 50 as to provision suffi=
cient resources to bound the measurement errors. We design
SketchLearn, a navel sketch-based

that resolves resource conflicts by learning their statistical
properties to eliminate conflicting traffic components. We
prototype SketchLearn on OpenVSwitch and P4, and our
testbed cxperiments and stress-test simulation shaw that
Sketchlcarn accurately and automatically monitors various
traffic statistics and cflcctively mear
surement with limited resources.
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in clouds and data cente

suse a variety of traffic statistics, such a3 per-flow frequency,
1o infer the key behaviors or any unexspected patterns in op-
crational networks. They use the measured traffic statistics
1o form the basis of management operations such as traffic
engineering, performance diagnosis, and intrusion preven-
tion. Unfortunately, measuring traffic statistics is nonstrivial
in ﬂ]r face of massive network traffic and large-scale net-

Error-fs ires per-flow
u'll:lung [15). yet today’s data center networks can have
thar of concurrent flows in a very small period from
50ms [2] down to even Sms [56]. This would require tremen~
dous resources for performing per-flow tracking.

In view of the resource constraints, many approaches in
the iterature leverage approximation lechniques to trade be-
tween resource usage and measurement accuracy, Examples
include sampling [9, 37, 64), top-k counting [5, 43, 44, 46],
and sketch-based approaches [18, 33, 40, 42, 58], which we

as
Their idea is to construct compact sub-linear data structures
to record traffic statistics, backed by theoretical guarantees
on how to achieve aceurate measurement with limited re-
sources. Approximate measurement has formed building
blocks in many statc-of-the-art network-wide measurement
systems (e.g., [32, 48, 55, 60, 62, 67]), and is also adopted in
production data centers (31, 68].
Although

Permissicn to make digital or hard copies of all or part of this wark for

per
made or distributed for profit or commercial advantage and that copies bear

ound, existing i mea-
surement approaches are inconvenient for use. In such ap-
proaches, massive network traffic competes for the limited
resources, thereby introducing measurement erors due to

ACM must be honored i
creditis permitted. To copy otherwise, or republish, ta post on servers of o
reditribute to list s ission andfor a fe t

multiple flows the same
counter in sketch-based measurement). To mitigate crrors,

permissions from permuisssons@haca org

SIGOOMM "18. August 20-25, 2015, Budapest, Hungary

© 20 Aesciation for Computing Machinery.
9781450355674/ 18408... 515.00

m,,. 1ok oxgf10. 11453230543 3230559

surement based on its theoretical guarantees. Thus, there

exists @ ight binding betsuen pesauree configurations and
Such ti P

tical limitati §2.2 for details) (i)



https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf

SketchlLearn combines multiple sketches with

elaborate post-processing for flexibility
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ABSTRACT

Metwork measurement is challenged to fulfill stringent re-
source requirements in the face of massive network traffic.
While approsximate measurement can trade accuracy for re-
source savings, it demands intensive manual efforts to config-
ure the right resource=accuracy trade-offs in real deployment.
Such user burdens are caused by how existing approximate
measurement approaches inherently deal with resource con-
flicts when tracking massive network traffic with limited
resources. In particular, they tightly couple resource config-
urations with accuracy parameters, so as to provision suffi-
cient resources to bound the measurement errors. We design
SketchLearn, a novel sketch-based measurement framework
that resolves resource conflicts by learning their statistical
properties to eliminate conflicting traffic components. We
prototype SketchLearn on OpenV5witch and P4, and our
testbed experiments and stress-test simulation show that
SketchLearn accurately and antomatically monitors various
traffic statistics and effectively supports network=-wide mea-
surement with limited resources.
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1 INTRODUCTIOMN

MNetwork measurement is indispensable to modern network
management in clouds and data centers. Administrators mea-
sure a variety of traffic statistics, such as per-flow frequency,
to infer the key behaviors or any unexpected patterns in op-
erational networks. They use the measured traffic statistics
to form the basis of management operations such as traffic
engineering, performance diagnosis, and intrusion preven-
tion. Unfortunately, measuring traffic statistics is non-trivial
in the face of massive network traffic and large-scale net-
work deployment. Error-free measurement requires per-flow
tracking [15], yet today’s data center networks can have
thousands of concurrent flows in a very small period from
30ms [2] down to even 5ms [56]. This would require tremen-
dous resources for performing per-flow tracking.

In view of the resource constraints, many approaches in
the literature leverage approximation techniques to trade be-
tween resource usage and measurement accuracy. Examples
include sampling [9, 37, 64], top=k counting [3, 43, 44, 46,
and sketch-based approaches [18, 33, 40, 42, 58], which we
collectively refer to as approximate measurement approaches.
Their idea is to construct compact sub-linear data structures
to record traffic statistics, backed by theoretical guarantees
on how to achieve accurate measurement with limited re-
sources. Approximate measurement has formed building

blocks in many state=of=the-art network-wide measurement
envrbicennge Fac vw (2 A8 26 a8 27 £70% cieend 2o cilom veodomaaboced Don
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Sketches compute statistical summaries,

favoring elements with high frequency.

Prixi—x;z¢lx||<0

estimation relative to sum
error of all elements



Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-]/x||,=100)
Assume two flows x_, Xx,,

with |||, =1000, ||x, ]}, =50

low frequency

high frequency



Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-]/x||,=100)
Assume two flows x_, x,,

with |||, =1000, ||x,|, =50

Error relative to stream size: 1%
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Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-]/x||,=100)
Assume two flows x_, x,,

with |||, =1000, ||x,|, =50

Error relative to stream size: 1%
flow size: X :10%, x.: 200%
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Other Problems a Sketch can’t handle

causality patterns rare things

\




Regardless of their imitations, sketches provide
trade-offs between resources and error, and

provable guarantees to rely on.
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