Advanced Topics in Communication Networks

Programming Network Data Planes

Alexander Dietmdtiller

nsg.ee.ethz.ch

ETH Zurich
Oct. 11 2018

Probabilistic data structures like Bloom Filters

nelp to trade resources with accuracy

hash_a(“HelTl0”)

INSERT —
“Hello” —]

hash_b(*“Hell0”)

Y

\

hash_a(“Hell0”)

hash_c(“Hel10”)

A

hash_b("*HelTl0™)

Y

A

__ hash_c("Hell10”)

O|lRr|O|O|R]|]O|O|O|O| K

-

QUERY
“Hello”

Last week on

Advanced Topics in Communication Networks

Bloom Filters take a fixed number of operations,

INSERT —
“Hello” —]

hash_a("“Hello0”) _

hash_b(“Hell0”)

<l

hash_a(“HelT10”)

\

hash_c(“Hel10)

-

hash_b(“Hell0”)

Y

<l
-

__ hash_c("Hell10”)

QUERY

“Hello”

O|Rr|O|O|R|]O|O|O|O| K

-

R
Q
. : : C
Bloom Filters take a fixed number of operations, 0
but hash collisions can cause false positives
hash_a(“Hel10”) > 1 < hash_b(“Bye”)
0
0
INSERT — 0 — QUERY
HHe'l'IO”_ 0 “Bye”
hash_b(“Hel10”) > 1 < hash_a(“Bye”)
0
0
hash_c(“Hel10”) > 1 < hash_c(“Bye”)
0
5
Re
Co n

A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X in the stream?
What iS in the Stream?lnvertible Bloom Filter

A bloom filter is a streaming algorithm

Re
C
S/e)

answering specific questions approximately.

A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X in the stream?
What iS in the Stream?lnvertible Bloom Filter

What about other questions?

Today we'll talk about: important questions,
how ‘sketches’ answer them,
and limitations of ‘sketches’

my master thesis :)

In networking, we talk about flows of packets,
but these questions apply to other domains as well,
e.g. search engines and databases.

Is a certain flow in the stream?
Bloom Filter

What flows are in the stream?

Invertible Bloom Filter, HyperLoglLog Sketch, ...

How frequent does an flow appear?
Count Sketch, CountMin Sketch, ...

What are the most frequent elements?
Count/CountMin + Heap, ...

How many flows belong to a certain subnet?
SketchlLearn >'9comm ‘18

Is a certain flow in the stream?
Bloom Filter

What flows are in the stream?

Invertible Bloom Filter, HyperLogLog Sketch, ...

How frequently does an flow appear?
Count Sketch, CountMin Sketch, ...

What are the most frequent elements?
Count/CountMin + Heap, ...

How many flows belong to a certain subnet?
SketchlLearn >'ccoMM ‘18

We are going to look at frequencies,

i.e. how often an element occurs in a data stream.

X4
X:
X,

1 vector of frequencies (counts)

X=
X_2 of all distinct elements Xx, distinct elements

distinct flows

In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

In the worst case, an algorithm providing

exact frequencies requires linear space.
\

Data Stream
> n elements in total
- n distinct elements
(in the worst case)

Probabilistic datastructures can help again!

Bloom Filters
quickly “filter” only those
elements that might be in
the set

Save space by allowing
false positives.

In the worst case, an algorithm providing

exact frequencies requires linear space.
\

> Data Stream
n elements in total

- n distinct elements

(in the worst case)

- n counters required? :(

Probabilistic datastructures can help again!

Bloom Filters Sketches

quickly “filter” only those provide a approximate
elements that might be in frequencies of elemetns
the set in a data stream.

Save space by allowing Save space by allowing
false positives. mis-counting.

A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

how ‘sketches’ answer them,
provable L1 error bounds for frequency queries.

A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries. L1 error bounds

X:
X5

Pr| x, — x, =¢|x|,]<0o

i
estimated true sum of

frequency frequency frequencies

The estimation error exceeds ¢||x||,

with a probability smaller than ¢

Pr| x, — x, =c¢|x|,]<0o

i i
estimated true sum of
frequency frequency frequencies

Let £=0.01, §=0.05, |x||,=10000

The probability for any estimate to be
off by more than 100 is less than 5%

(after counting 10000 elements)

relative to L1 norm

Prl x, — x, =c¢lx|,]<0o

i
estimated true sum of

frequency frequency frequencies

The estimation error exceeds ¢||x||,

with a probability smaller than 6

designed

A CountMin Sketch uses multiple arrays and hashes.

counters — f w indices
\\: perarray
(range of hashes)
_"
B .
d arrays w-d counters
(one hash function per array) (total size)

Hash collisions cause over-counting.

hash_c
C“TCP™

hash_a

(“Test”)

hash_a

(“Net”)

—_—_—

—» | X*+... | hash_b
(“Bye™
hash_b
C“UDP™)
hash_b
(“FUBAR™)
—_—T

— | x"+...

COUNT

— [x3+1

xP+1

. X°+1

Returning the minimum value minimizes the error.

Xa

XC

A\

—— QUERY

return
min(x2,x",x<)

provable L1 error bounds

Prl X — x, =¢lx|,]<6

i i
estimated true sum of
frequency frequency frequencies

Error Bounds A~ . ~h
Xi = min Xi
per hash/array heh, . h,
estimated estimate for
frequency specific hash

Error Bounds
for the minimum

Optimal Size

Understanding the error bounds allows
dimensioning the sketch optimally.

Error Bounds
per hash/array

Error Bounds
for the minimum

Optimal Size

Error Bounds ~ . ~h
Xi = min X;
per hash/array heh, . h,
estimated estimate for
frequency specific hash

The error bounds can be derived The error bounds can be derived
with Markov’s Inequality with Markov’s Inequality

Pr[X=c-E[X]]<

per hash/array per hash/array

Error Bounds Error Bounds

1
C

~h ~h 1 ~h ~h 1
— Y. > - T <= — Y > T <=
Error Bounds Pr [Xl X;=C E [i XI]] T c Error Bounds Pr [Xl X;=C E[; XI]] =7
per hash/array per hash/array
~h ~h
i X; + Z X] 1h(X1’X]) X = X; + Z Xj 1h(xl’xj)
X.*X X #£X

_[1, ifh(x)=h(x,)
|0, otherwise

~h h 1 ~h ~h 1

Error Bounds PI‘[XI _X1>C.E[i _X']]SE Error Bounds Pl‘[Xl —X;=C E[i _Xi]]sz
per hash/array per hash/array

~h _ oh —

X;p =X = ijlh(xi’xj) i T X = ijlh(xl’xj)

xj;tx,- x,-ix
Ah —_
E[i—xi} = E ijlh(xl,xj)
xj;ﬁx
We treat the data as a constant and the We treat the data as a constant and the
hash as a random function with certain properties. hash as a random function with certain properties.

Pr{x"—x >C-E[Ah—x]]<l Pr(x"—x>c E[Ah—x]]<l
Error Bounds i i— i T e Error Bounds i = i ild—= C
per hash/array per hash/array

~h _ oh —

P X = ijlh(xl’xj) P X = ijlh(xz’xj)
X; # X; X;#X
E[i—xi] = E ijlh(xl,xj) E[l—xl] = ZX]E[lh(XI,Xj)}
X, #X ‘ X, #X,
random

constant

We treat the data as a constant and the We treat the data as a constant and the

hash as a random function with certain properties. hash as a random function with certain properties.
Prig'—x=c-E[2"—x]]<+ Prig'—x=c E[2"—x]]<*
Error Bounds i i i T e Error Bounds i i i T e
per hash/array per hash/array
i_Xl = ijlh(xl’xj) Xi_xl = ijlh(xl’xj)
xl-;éx xl-ix
E[Ah—x} = ZxE{l (x x)] E[Ah—x} < le
i i j h i J i 1 - JW
xj;éx =) — X;#X
=W

wikipedia.org/wiki/Universal_hashing

~h ~h 1 ok o 1
S —X.=C- =X 2= —x.>C- R < =
Error Bounds PI‘[XI X;=C E[Xr Xr]]— C Error Bounds PI‘[XI X, =C E[; XIH_ -
per hash/array per hash/array
~h . ~h _
fx= XL (x;, x)) R'=x = 2 x; 1, (%, %))
X;#X X # X,
~h 1 1 ~h 1 1
Bl -x] = X x— = Yx— E[f'-x] = X x,— = [Ix|,=
J J i i j
X FX w X; X;# X; w

Error Bounds
per hash/array

Error Bounds
per hash/array

Error Bounds
per hash/array

~h h h
Error Bounds PF[XI- _XiZ\ ¢ ,”le]S_é »

per hash/array

C
w c

The estimate for each hash has

a well defined L1 error bound.

~h h h
Error Bounds PI‘[Xl. —X;= € ||X||1]S 0

per hash/array

Error Bounds

< per hash/array
w C

IA

1 1

~ C
Pr{x,—x> W [x[l,]
The estimate for each hash has

. Error Bounds
a well defined L1 error bound. .
for the minimum

Error Bounds

for the minimum

What about the minimum?

Optimal Size Optimal Size

Multiple hash functions work like independent trials.

Error Bounds Error Bounds
per hash/array per hash/array

Pr[min 2'—x=<|x|,] < ?

Pr[min &'—x=<|x|,] < ?
heh, .. h, w heh, .. h,
gq:__/ S —
Error Bounds Xi

)

Error Bounds i
for the minimum for the minimum And

b ®)

[T Priz'—xz="lxl] =
heh, .h, w
Optimal Size Optimal Size

Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size

Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size

IA
0

. ~h
min X. —X.=—
w

>y

IA
9

A C
H Pr[xih_XiZ_Hle]
w

heh, .h, _

a =

error bound per hash

Pr| min

Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size

Error Bounds

per hash/array

Error Bounds

for the minimum

Optimal Size

>y

1

min X. — x.> < ||x||1]
w

c
~ x2Sl

c
> — < =
= Il

IA
a |-

IA
-

IA
nm| —_

1 1

Pr(x,—x,= ¢ ||x|]j]J= o
— ——

c 1

o “d

Error Bounds w c
for the minimum

We have proven the error bounds!
But what about the constant c?

Choosing c=e minimizes the
total number of counters.

=S o welC
w E
1 1
625 = d= 1[15
C 1 minimize € 1
d-w=§logcs = ?IHE

Optimal Size

For every c, there is a pair (d,w) achieving
the error bound and confidence (&, 0).

=< o w=|¢
w E
5:i = d=

d

log. H

)

Optimal Size

A CountMin sketch recipe

Given &,0, choosing

e
wW=|F

1

d= 11’15

requires the minimum number of
counters s.t. the CountMin Sketch

can guarantee that

Optimal Size N
X—x;=e||x|l;

with a probability less than

A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

A CountMin sketch uses the same principles as a

counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

- only one design out of many!

CountMin sketch recipe

lnl— ,WZ{%}

Choose d= 5

Then X,—x,> ¢||x||, with a probability less than &

A Count sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L2 error bounds for frequency queries.

The Count sketch uses additional hashing to The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources. give L2 error bounds, but requires more resources.
CountMin sketch CountMin sketch Count sketch
h, .., h;: u- {1, .., w} h, .., h: u- {1, .., w} TPl u- {1, .., w}
g: u - {+1, -1}
COUNT X., COUNT X, COUNT X,
for h in h, .., h;: for h in h, .., h;: for h in h, ., hg:
Reg,[h(x)] + 1 Reg,[h(x)] + 1 Reg,[h(x)] + g(x,)
QUERY X, : QUERY X, : QUERY X,:
return min_ ... (return min ... (return median, ;.. (
Reg, [h(x)] Reg, [h(x,)] Reg,[h(x;D)]1 * g(x,)
)))
The Count sketch uses additional hashing to The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources. give L2 error bounds, but requires more resources.
CountMin sketch recipe CountMin sketch recipe
|| w=[2] =[] w=[2]
Choose d—lng,W—g Choose d—lng,W—g
Then X,—x,> ¢||x||, with a probability less than 6 Then X,—x,> ¢||x||, with a probability less than 6

Count sketch recipe

1

e
lng

2
&

Choose d= , W=

Then X,—x,> ¢||x||, with a probability less than &

Sketches are the new black

OpenSketch

NSDI

[source]

‘13

UnivMon
SIGCOMM ‘16

[source]

...and many more!

SketchLearn
SIGCOMM ‘18

[source]

[source]

[source]

SketchLearn
SIGCOMM ‘18

[source]

Software Defined Traffic Measurement with OpenSketch

iyt S G riceton i

p—— R o

e) v,m,.'thx‘:
oo o g i

i, g b s

e huppo o
e

i B e ek
o et s el o (£ oy

1 Intodaction

e s o
O e e
o mm——

One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

Zacing L At Manouse, Gregory Versanger. i Sekar, Vadens ravorman'

s Hopkins Universty - Gameg Melon Unversiy
ABSTRACT 1 Introduction

B Wik e b
e o o e e i o

T e

siﬁ"““'ﬁ.."h"‘n"‘;;“'“';.‘ S

SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference

Qun Huang. Patrick . C. Lee!, and Yungang Bao!

AnstRACT St oo 5 0 S, g e

Errs

KEYWORDS
R et (= s

g ity e ciig e

SketchLearn combines multiple sketches with

elaborate post-processing for flexibility

ABSTRACT

‘While

Network measurement is challenged to Fulfil stringent re-
soutce requirements in the face of massive network Imﬂic

can trad 1 INTRODUCTION

SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference

Qun Huang', Patrick P. C. Leef, and Yungang Bao®
*State Key Lab of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
#Department of Computer Science and Engineering, The Chinese University of Hong Kong

2018 Conference, August 20-25, 2013, Budapest, Hungary. ACM, New
York, NY, USA, 17 pages. hitps://doi.org/10.1145/3230543.3230559

ure the right

e sing, f st teove el ety :anhg-

CCS CONCEPTS

KEYWORDS
Sketch; Network measurement

ACM Reference Format:

Such user burdens are caused by how existing sppmxlms(e
measurement approaches inherently deal with resource con-

flicts when tracking massive netwark traffic with limited
resources. In particular, they tightly couple resource config-
urations with accuracy parameters, 5o s to provision suffi-
cient resources to bound the measurement errors. We design
SketchLearn, a novel sketch-hased measurement framework
that resalves resource conflicts by learning their statistical Erroref
properties to eliminate conflicting traffic components. We N
prototype SketchLearn on OpenVSwitch and P4, and our
testbed experiments and stresstest simulation show that
SketchLearn accurately and automatically monitors various
traflic statistics and effectively supports netwark-wide mea-
surement with limited resources.

+ Networks — Network measurement;

Relieving User Burdens in Approximate Measurement with Au-

Network measurement is indispensable lo modern network
clouds and data centers. Administrators mea=
sure a variety of traffic statistics, such as per-flow frequency,
to infer the key behaviors or any unexpected patterns in op=
erational netwarks. They use the measured traffic statistics
to form the basis of management operations such as traffic
engineering, performance diagnosis, and intrusion preven-
tion. Unfortunately, measuring traffic statistics is non-trivial
in the face of massive network traffic and large-scale net=

work
Iul:kmg [15], yet today’s data center networks can have
ther of concurrent flows in a very small period from
50ms [2] down to even 5ms [56). This would require tremen-
dous resources for performing per-flow tracking

In view of the resource constraints, many approaches in
the literature leverage approximation techniques to trade be-
tween resource usage and measurcment accuracy.
include sampling [9, 37, 64], top-k counting [5, 43, 44, 46].
and sketchebased approaches [18, 33, 40, 42, 58], which we

to as app

Their idea is to construct compact sub-linear data structures
to record traffic statistics, backed by theorctical guarantees
on how to achicve accurate measurcment with limited re-
sources. Approximate measurement has formed building
Qun Huang, Patrick P. C. Lee, and Yungang Bao. 2018. SketchLearn: blocks in many

e ie EE e em el

‘Software Defined Traffic Measurement with OpenSketch

ko P Rui i
“Univrsof Sohers Calforsa . Prisceon Uniersts

Absract e s

e ey

e e e e a5t %
ey «,.n.,.ma, S e
e

1 Intrducion
e ez, o P

Today we’ll talk about:

One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

Zaoing L, Antnis Manousi, Gregory Vorsangr'. yas Sekar Viadiie Braverman'
Y Tohrs Hopins Unversty Gty Hlon Unversty

ABSTRACT 1 Introduction

i ey 5. B di i mememen ik s e g b s

e T o e i

gy

o s s i i 5. Reio (5] Vo s on

e 315

MTWT_?;‘.”.';J“,T.."M “J.:";.“
=

SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference

Qun Huang. Pateick . C. Lec’, and Yungang Bao'

astract [——
[by rre. 1 INTRODUCTION.
i

ces cocerts

B

vt A, ST
e e e
e e

important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)

Sketches compute statistical summaries,

favoring elements with high frequency.

Prixi—x;ze|x|,]<6

estimation relative to sum
error of all elements

Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x|,=10000 (= &-||x||,=100)
Assume two flows x,, Xx,,

with [|x,[|l, =1000, ||x,[|, =50

Error relative to stream size: 1%

Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-||x||,=100)
Assume two flows x_,, X,

with |[x [, =1000, [x,]l, =50

low frequency

high frequency

Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-||x||,=100)
Assume two flows x_,, Xx,,

with [|x,[l, =1000, ||x,|l, =50

Error relative to stream size: 1%
flow size: x_: 10%, x,: 200%

Other Problems a Sketch can’t handle

causality patterns rare things

\

Today we'll talk about: important questions,
how ‘sketches’ answer them,
limitations of ‘sketches’,

and my master thesis :)

Regardless of their limitations, sketches provide
trade-offs between resources and error, and
provable guarantees to rely on.

Advanced Topics in Communication Networks

Programming Network Data Planes

Alexander Dietmtuller

nsg.ee.ethz.ch

ETH Zrich
Oct. 11 2018

