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Networking is on the verge of a paradigm shift
towards deep programmability



Network programmability is attracting

tremendous industry interest...

VMware Acquires Once-Secretive Start-
Up Nicira for $1.26 Billion

JULY 23, 2012 AT 1:25 PM PT W Tweet 8+ g3 Share | @ Print

VMware, the software company

best known for its virtualization

technology that forms the

backbones of so-called cloud I
computing today, said it will pay I
$1.26 billion for Nicira, a I
networking start-up that has

sought to do to networks what

VMware has done to computers.

The news comes on the same day
that VMware was to report I l I ‘ I l a
quarterly earnings. And while I

don’t usually cover VMware’s

earnings, I may as well mention the results: The company reported revenue for the quarter
ended June rose to $1.12 billion, while earnings on a per-share basis were 68 cents.
Analysts had been expecting sales of $1.12 billion and earnings of 66 cents.

Nicira had been running in stealth mode for quite awhile; I got to reveal its plans to the
world last February.

The deal amounts to a nice payoff for Nicira’s investors including Andreessen Horowitz,
Lightspeed Venture Partners and NEA, as well as VMware founder Diane Greene and
venture capitalist Andy Rachleff.

(and money)

With $600M Invested in SDN Startups, the Ecosystem Builds

<

Scott Raynovich, June 10, 2014
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More than $600 million has been invested in at least two dozen software-

defined networking (SDN) startups so far, according to Rayno Report Related Articles
research. You can expect that to continue to climb. With the SDN ecosystem How to Effectively Embed SDN in the
starting to take hold with a broad range of alliances and distribution Enterprise

partnerships, we're just getting started. NFV and SDN: What's the Difference

Two Years Later?
The Arista IPO will help build visibility for next-generation, software-driven

networking. But Arista is selling its own hardware and is not an SDN pure-
play. A new line of SDN startups, with a more radical approach to software-
based networking, is building momentum. These newer SDN startups are
just getting their gear into customers’ hands and starting to build sales
channels, so you can expect a long revenue ramp.

sFlow Creator Peter Phaal On Taming
The Wilds Of SDN & Virtual
Networking

Featured Article: Bringing Data-Driven
SDN to the Network Edge

NFV Delivers Pervasive Intelligence

This excitement is boosting startup valuations, according to Rayno Report for MNOs

research. There are now at least ten SDN startups with valuations over $100

million. As | reported in April, a recent investment in Cumulus Networks

pushed up the valuation of the private company north of $300 million, according to industry sources. Big Switch, which
did a deal in 2012 valuing it near $170 million, took money from Intel in 2013, most likely boosting its valuation to over
$200 million, according to several sources.



Barefoot Networks (Stanford startup) started to produce
re-programmable network hardware in 201 3
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This startup may have built the world's fastest
networking switch chip

Barefoot Networks is also making its switch platform completely programmable
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By Stephen Lawson

Senior U.S. Correspondent, IDG News Service

MORE LIKE THIS

= Internet2 at 20: Alive and
‘ ﬁ, kicking
>
> Identifying the security
! pitfalls in SDN
. »
Lessons learned: Tribune
Media rebuilds IT from the
ground up




In June 2019,
Barefoot was acquired by... Intel

THE WALL STREET JOURNAL.

Europe Edition ¥ = September 22,2019 = Print Edition = Video

Home World U.S. Politics Economy Business Tech Markets Opinion Life&Arts Real Estate WSJ. Magazine

p::) TECH
* Intel Agrees to Acquire Networking Startup Barefoot Networks

AA Barefoot Networks is backed by Google, Alibaba, Tencent and Goldman Sachs
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Network programmability is also getting traction

in many academic communities

| Distributed
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>8.7k

# of citations of the original

OpenFlow paper (¥) in ~10 years

(*) https://dl.acm.org/citation.cfm?id=1355746



Why? It's really a story in 3 stages



]

The network management crisis



Networks are large distributed systems
running a set of distributed algorithms
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These algorithms produce the forwarding state
which drives IP traffic to its destination

Forwarding state

dest next-hop
Google 0
|
0 Yahoo! ]
Control plane 1 Sky./.r.)e O

Data plane
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Operators adapt their network forwarding behavior
by configuring each network device individually
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induced by a low-level configuration C

Adapt C so that the network follows the new behavior
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Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco I0S

!
ip multicast-routing
!
interface Loopbacke
ip address 120.1.7.7 255.255.255.255
ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1lQ 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
!
router bgp 700
neighbor 125.1.17.1 remote-as 100
|

address-family ipv4

redistribute ospf 1 match internal external 1 external 2

neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2

Juniper JunOS

interfaces {

s0-0/0/0 {
unit @ {
family inet {
address 10.12.1.2/24;

}
family mpls;

}

}
ge-0/1/0 {

vlan-tagging;

unit @ {
vlan-id 100;
family inet {

address 10.108.1.1/24;

}
family mpls;

}

unit 1 {
vlan-id 200;
family inet {

address 10.208.1.1/24;

}

}

}

}

protocols {
mpls {
interface all;
}

bep {



A single mistyped line is enough
to bring down the entire network

Anything else than 700 creates blackholes

redistribute bgp 700 subnets



It's not only about the problem of configuring...
the level of complexity in networks is staggering

The Data Plane The Control Plane

Source Mark Handley. Re-thinking the control architecture of the internet.
Keynote talk. REARCH. December 2009.



Complexity + Low-level Management = Problems



@ @ E Google accidentally broke the X -+
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Google accidentally broke the internet
throughout Japan

A mistake led to internet outages for about half of the country.

@ Internet




Someone in Google fat-thumbed a
Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

[...] the result of which was traffic from Japanese giants
like NTT and KDDI was sent to Google

on the expectation it would be treated as transit.

The outage in Japan only lasted a couple of hours,
but was so severe that [...] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.



CenturyLink: 750 calls to 911 missed during Aug. 1
outage caused by human error in Minnesota, North

Dakota

By Barry Amundson on Aug 15, 2018 at 4:43 p.m.




“Human factors are responsible

for 50% to 80% of network outages’

Juniper Networks, What’s Behind Network Downtime?, 2008



lronically, this means that
data networks work better during week-ends...

Monday

Tuesday
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Thursday
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Saturday -

Sunday
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'I'ie_lmgmcl Under
Grisis
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

OF THE NATNIONAL ACADEMIES

National Research Council. The Internet Under Crisis Conditions: Learning from September 11
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The_lntgmet Under
GIisIS
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates
suggest that
The Internet was more stable

than normal on Sept 11

Information suggests that
operators were watching the news
instead of making changes

to their infrastucture



Solving these problems used to be hard because
network devices tend to be completely locked down

closed software

closed hardware

Cisco™ device



Software-Defined Networking



What is SDN and how does it help?

 SDN is a new approach to networking
— Not about “architecture”: IP, TCP, etc.

— But about design of network control (routing, TE,...

'

 SDN is predicated around two simple concepts

— Separates the control-plane from the data-plane
— Provides open API to directly access the data-plane

* While SDN doesn’t do much, it enables a /ot



Rethinking the “Division of Labor”



Traditional Computer Networks

Data plane: "
Packet
processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets



Traditional Computer Networks

Control plane:
Distributed algorithms,
establish state in devices

—
—
—_—
—

Track topology changes, compute
routes, install forwarding rules



Software Defined Networking (SDN)

Logically-centralized control




SDN advantages

Simpler management

— No need to “invert” control-plane operations

Faster pace of innovation

— Less dependence on vendors and standards

Easier interoperability

— Compatibility only in “wire” protocols

n

Simpler, cheaper equipment

— Minimal software




OpenFlow Networks



OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller
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OpenFlow switches can emulate
different kinds of boxes

* Router * Firewall
— Match: longest — Match: IP addresses and
destination IP prefix TCP/UDP port numbers
— Action: forward out a — Action: permit or deny
link o NAT
* Switch — Match: IP address and
— Match: destination MAC port
address — Action: rewrite address

— Action: forward or flood and port



Controller: Programmability

4 A

SDN/OpenFlow

controller

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets



Controller: Programmability

4 \

while (true):
read event e:
if e == switch up:

- update topology
- populates switch table

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets



Example OpenFlow Applications

Dynamic access control

Seamless mobility/migration

Server load balancing

Network virtualization

Using multiple wireless access points
Energy-efficient networking
Adaptive traffic monitoring

Denial-of-Service attack detection



E.g.: Dynamic Access Control

* |nspect first packet of a connection
* Consult the access control policy
* |nstall rules to block or route traffic

=




E.g.: Seamless Mobility/Migration

e See host send traffic at new location
* Modify rules to reroute the traffic

Bafln
BEaE8




E.g.: Server Load Balancing

* Pre-install load-balancing policy
. e Split traffic based on source IP




Challenges



Heterogeneous Switches

Number of packet-handling rules

Range of matches and actions

Multi-stage pipeline of packet processing
Offload some control-plane functionality (?)

access

control B |ook-up N |ook-up




Controller Delay and Overhead

* Controller is much slower than the switch
* Processing packets leads to delay and overhead

* Need to keep most packets in the “fast path”

H BN
packets -q



Distributed Controller

Controller
Application

For scalability
and reliability

Partition and replicate state

Controller
Application




Testing and Debugging

* OpenFlow makes programming possible
— Network-wide view at controller

— Direct control over data plane

* Plenty of room for bugs

— Still a complex, distributed system

* Need for testing techniques
— Controller applications
— Controller and switches
— Rules installed in the switches



Programming Abstractions

* OpenFlow is a low-level API

— Thin veneer on the underlying hardware
 Makes network programming  controller

possible, not easy! [:]l
H’

/

== = =
Switches



Example: Simple Repeater

Simple Repeater

def switch_join(switch):
# Repeat Port 1 to Port 2
pl = {in_port:1}
al = [forward(2)]
install(switch, pl, DEFAULT, al)

# Repeat Port 2 to Port 1

p2 = {in_port:2}

a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

When a switch joins the network, install two forwarding rules.



Example: Web Traffic Monitor

Monitor “port 80" traffic

def switch_join(switch):
# Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def stats_in(switch, p, bytes, ..)
print bytes
sleep(30)

a—
query_stats(switch, p) y iil

N

4
_/:',>

Web traffic

When a switch joins the network, install one monitoring rule.



Composition: Repeater + Monitor

Repeater + Monitor

-

def switch_join(switch):
patl = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, patl, DEFAULT, None, [forward(2)])
install(switch, pat2web, , None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

\

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

J

Must think about both tasks at the same time.



Asynchrony: Switch-Controller Delays

« Common OpenFlow programming idiom
— First packet of a flow goes to the controller
— Controller installs rules to handle remaining packets

L Controller

EEE
eckers (P WD W

* What if more packets arrive before rules installed?
— Multiple packets of a flow reach the controller

* What if rules along a path installed out of order?
— Packets reach intermediate switch before rules do

Must think about all possible event orderings.



Better: Increase the
level of abstraction

« Separate reading from writing
— Reading: specify queries on network state
— Writing: specify forwarding policies

 Compose multiple tasks
— Write each task once, and combine with others

* Prevent race conditions
— Automatically apply forwarding policy to extra packets

« See http://frenetic-lang.org/



http://frenetic-lang.org/

"Deep” Network Programability



Pinky Gee, Brain, did OpenFlow take over the world?

The Brain Well... no.




OpenFlow is not all roses

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

The specification itself keeps getting more complex

extra features make the software agent more complicated

consequences  Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all
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P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly", Glen Gibb', Martin I1zzard’, Nick McKeown*, Jennifer Rexford™",
Cole Schlesinger™, Dan Talayco’, Amin Vahdat®, George Varghese®, David Walker™”

'Barefoot Networks “Intel *Stanford University

ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
vears, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deploved. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo P4 ta confionre a curiteh 0 add a new hierarchical l1abel

“"Princeton University *Google

*Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g.. NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.

SDN Control Plane
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multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
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sort to deploying software switches that are easier to extend
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Protocol Independent Switch Architecture (PISA) for
high-speed programmable packet forwarding

Ingress Egress

Match-Action Pipeline Match-Action Pipeline

]
YYVVVY

Parser Switching logic Deparser
crossbar, shared buffers, ...
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multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
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By default,
PISA doesn't do anything, it's just an "architecture”

Ingress Egress

Parser Switching logic Deparser



P4 is a domain-specific language which describes
how a PISA architecture should process packets

a4

https://p4.org




IPv4

Logical behavior
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PISA + P4 is strictly more general OpenFlow

4

R

Program

Compile

l

P4 & OpenFlow

Apps

Northbound API

OpenFlow Controller

OpenFlow Protocol

OpenFlow Agent

>
Auto-Generated API

Driver

>

Target Binary

Programmable Data Plane ASIC

R

Copyright © 2016 P4 Language Consortium.
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Course goals



This course will introduce you to the emerging area of
network programmability

Learn the principles of network programmability

at the control-plane and at the data-plane level

Get fluent in P4 programming

the go-to language for programming data planes

Get insights into hard, research-level problems

and how programmability can help solving them



Course organization



The course is gonna be divided in two blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 in teams of 2—3



The course is gonna be divided in two blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 in teams of 2—3



There will be 2h of lectures & 2h of exercises

Tue 13—15 Lecture

Tue 15—17 Practical exercises with P4

Exercises are not graded but will help at the exam

Both will take place in ML H 44



The course is gonna be divided in two blocks

Lectures/Exercices Group project

~7 weeks >= 7 weeks

how to program in P4 ideally, teams of 3



In the project, you'll develop and evaluate
a fully-working network application in P4

Your can choose your application

Reproduce research papers or implement new ones

We'll provide feedback and assist you throughout

during the lecture/exercise slot and online

Grade will depend on the code, report and presentation

presentations during the last week of the lecture



Your final grade

Exam Group project

50% 50%



Exam

50%

Design a P4 application
for solving problem <X>

Optimize program <X>

Is program <X> correct?

. important to do the exercises



Your dream team for the semester

Maria

Edgar Roland
(head TA)

Albert Alexander Damien



Our website: https://adv-net.ethz.ch
check it out regularly

slides, pointers to exercises, readings,
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This class will introduce students to advanced, research-level topics in the area of communication
networks, both theoretically and practically. Coverage will vary from semester to semester.
Repetition for credit is possible, upon consent of the instructor. During the Fall Semester of 2019,
the class will concentrate on network programmability and network data plane programming.

News

Sept 12 If you have questions about the lecture, one teaching assistant will be there on Tuesday 17 between 1pm and 2pm in the

official lecture hall (ML H 44).



https://adv-net.ethz.ch/

We’ll use Slack (chat client)
to discuss about the course, exercises, and projects
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#changes v

stewart
Im'ma tweeting that

https://twitter.com/glitchlog/status/223600465462566912
3= Glitch Change Log @glitchlog
12 new hairstyles & 19 new skin colors have been added to the Vanity. Taste
the hairy rainbow! Forum post:

http://www.glitch.com/forum/general/24360/
Thursday, July 12th, 2012 M

myles

Entering a street with a Qurazy for you now shows a pretty animated overlay where the growl used to go, for 10 seconds
liz

Fixed bug #9358. Piggies shouldn't get stuck walking in place any more.

bugbot

Bug #9358

Title
Piggies are stuck walking in place

Creator Assignee
mackenzie liz

Status Priority
fixed normal

eric
@kristel, can you test on dev.glitch.com to see if coat sleeves are now working as expected?

kristel
indeed they are! thanks @eric!

Web, smartphone and desktop clients available

\ g




Register today using your real name
> https://adv-netl9.slack.com/signup
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Should | take this course?



It depends...

You shouldn't take the course if...
you hate programming
you don't want to work during the semester

you expect 10+ years of exam history

Besides that, if you like networking... go for it!
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Programming Network Data Planes
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Enable programmable
packet scheduling
at Tbps

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz Alexander Dietmiiller Laurent Vanbever
ETH Ziirich ETH Ziirich ETH Ziirich
Abstract Incoming packets sequence

Push-In First-Out (PIFO) queues are hardware primitives
which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFQ, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to tratfic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PTFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

already enqueued

®  SWEERE—EERED

PIFO queue (thearetical) \

slrategy A !
2 -- 3 LY
BRI, o e
[4-5] Sjaf4 Imal out,
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Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident IT [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PTFO implementation.




Converge upon
remote Internet failures
in less than 1 sec

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Thomas Holterbach] Edgar Costa Molero} Maria Apostolaki*
Alberto Dainotti] Stefano Vissicchiof Laurent Vanbever*

*ETH Zurich, “CAIDA / UC San Diego, *University College London

Abstract

We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (%ii)
recover connectivity—all this, completely in the data plane.

We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Qur results indicate that Blink: (1) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction

Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30s [19,24,28]. These failures
indeed trigger a control-plane-driven convergence through
the propagation of BGP updates on a per-router and per-prefix

o

CDF over the BGP peers

Time difference (s) between the
outage and the first and last withdrawal

Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

‘We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time fo,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp #; of the first BGP withdrawal
they received from the same TWC ASes. Figure 1 depicts
the CDFs of (f; —#y) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the fast prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).




Secure Bitcoin
by relaying blocks
in hardware

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki Gian Marti
ETH Zurich ETH Zurich
apmaria@ethz.ch gimarti @student.ethz.ch

Abstract—Nowadays Internet routing attacks remain practi-
cally effective as existing countermeasures either fail to provide
protection guarantees or are not easily deployable. Blockchai

Jan Miiller Laurent Vanbever
ETH Zurich ETH Zurich
jan.m.muller@me.com Ivanbever@ethz.ch

Problem Protecting against such partitioning attacks is chal-
lenging. On the one hand, local (and easily deployable)

systems are particularly vulnerable to such attacks as they rely on
Internet-wide ¢ ications to reach In particul
Bitcoin—the most widely-used cryptocurrency—can be split in
half by any AS-level adversary using BGP hijacking.

In this paper, we present SABRE, a secure and scalable
Bitcoin relay network which relays blocks worldwide through
a set of connections that are resilient to routing attacks. SABRE
runs alongside the existing peer-to-peer network and is easily
deployable. As a critical system, SABRE design is highly resilient
and can efficiently handle high bandwidth loads, including Denial
of Service attacks.

We built SABRE around two key technical insights. First,
we leverage fundamental properties of inter-domain routing
(BGP) policies to host relay nodes: (i) in networks that arc
inherently protected against routing attacks; and (i) on paths
that are economically-preferred by the majority of Bitcoin clients.
These properties are generic and can be used to protect other
Blockchain-based systems. Second, we leverage the fact that
relaying blocks is ication-heavy, not putation-heavy.
This enables us to offload most of the relay operations to
programmable network hardware (using the P4 programming
language). Thanks to this hardware/software co-design, SABRE
nodes operate seamlessly under high load while mitigating the
effects of malicious clients.

We p a complete impl ion of SABRE together
with an extensive evaluation. Qur results demonstrate that
SABRE is effective at securing Bitcoin against routing attacks,
even with deployments of as few as 6 nodes.

I. INTRODUCTION

Cryptocurrencies, and Bitcoin in particular, are vulnera-
ble to routing attacks in which network-level attackers (i.e.,
malicious Autonomous Systems or ASes) manipulate routing
(BGP) advertisements to divert their connections. Once on-
path, the AS-level attacker can disrupt the consensus algorithm
by partitioning the peer-to-peer network. Recent studies [17]
have shown that these attacks are practical and disruptive.
Specifically, any AS-level attacker can isolate ~50% of the
Bitcoin mining power by hijacking less than 100 prefixes [17].
Such attacks can lead to significant revenue loss for miners and
enable exploits such as double spending.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.23252
www.ndss-symposium.org

counter es [17] fail to provide strong protection guar-
antees. These countermeasures include having Bitcoin clients
monitor their connections (e.g., for increased or abnormal
delays) or having them select their peers based on routing
information. On the other hand, Internet-wide countermeasures
are extremely hard to deploy. For example, systematically
hosting Bitcoin clients in /24 prefixes (to prevent more-
specific prefix attacks) requires the unlikely cooperation of all
Internet Service Providers hosting Bitcoin clients in addition
to a considerable increase to the size of the Internet routing
tables. Worse yet, even heavy protocol modification such as
encrypting all Bitcoin traffic would not be enough to guarantee
Bitcoin safety as AS-level attackers would still be able to
distinguish (and drop) Bitcoin traffic using transport headers.

SABRE: A Secure Relay Network for Bitcoin In this paper,
we present SABRE, a secure relay network which runs along-
side the existing Bitcoin network and which can protect the
vast majority of the Bitcoin clients against routing attacks. Un-
like existing countermeasures, SABRE secures Bitcoin against
routing attacks in a way which: (i) provides strong security
guarantees to any connected client by enabling it to learn and
propagate blocks: (ii) is partially deployable; and (iii) provides
security benefits early-on in the deployment, with as little as
two relay nodes. We built SABRE based on two key insights.

Insight #1: Hosting relays in inherently safe locations Our
first insight is to host SABRE relay nodes in locations that: (i)
prevent attackers from diverting relay-to-relay connections, so
as (o secure SABRE internal connectivity; and (ii) are attractive
(from a routing viewpoint) to many Bitcoin clients, so as to
protect client connections to the relay network. We do so
by leveraging a fundamental characteristic of BGP policies,
namely, that connections established between two ASes which
directly peer with each other and which have no customers
cannot be diverted by routing attacks. In SABRE, only such
ASes are considered for relay locations.

Using real routing data, we show that such safe locations
are plentiful in the current Internet with 2000 ASes being
eligible. These ASes include large cloud providers, content
delivery networks, and Internet eXchange Points which already
provide hosting services today and therefore have an incentive
(o host SABRE nodes. We also show that SABRE deployments
with 6 nodes are already enough to protect 80% of the clients
from 96% of the AS-level adversaries (assuming worst case
scenario for SABRE).




Speed-up
network computations
by running them in hardware

Hardware-Accelerated Network Control Planes

Edgar Costa Molero Stefano Vissicchio Laurent Vanbever
ETH Ziirich University College London ETH Ziirich
cedgar@ethz.ch s.vissicchio@cs.ucl.ac.uk lvanbever @ethz.ch
ABSTRACT cover the entire implementation spectrum, from pure software

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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of this work owned by others than ACM must be honored. Abstracting with
credil is permitted. To copy otherwise, or republish, W post on servers or W
redistribute to lists, requires prior specific permission and/or a lee. Request
permissions from permissions @acm.org.

HotNets-XVII, November 15-16, 2018, Reds 1, WA, USA

@ 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6120-0/18/11...$15.00
hrtps://doi.org/10.1145/3286062.3286080

to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.
Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RTBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of hest path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
17, 21, 29)).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time Lo revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fund, ! hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.




Obfuscate network topologies
from attackers

NetHide: Secure and Practical Network Topology Obfuscation
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Abstract

Simple path tracing tools such as traceroute allow
malicious users to infer network topologies remotely and
use that knowledge to craft advanced denial-of-service
(DoS) attacks such as Link-Flooding Attacks (LFAs).
Yet, despite the risk, most network operators still allow
path tracing as it is an essential network debugging tool.

In this paper, we present NetHide, a network topol-
ogy obfuscation framework that mitigates LFAs while
preserving the practicality of path tracing tools. The key
idea behind NetHide is to formulate network obfuscation
as a multi-objective optimization problem that allows for
a flexible tradeoff between security (encoded as hard
constraints) and usability (encoded as soft constraints).
While solving this problem exactly is hard, we show that
NetHide can obfuscate topologies at scale by only con-
sidering a subset of the candidate solutions and without
reducing obfuscation quality. In practice, NetHide obfus-
cates the topology by intercepting and modifying path
tracing probes directly in the data plane. We show that
this process can be done at line-rate, in a stateless fash-
ion, by leveraging the latest generation of programmable
network devices.

We fully implemented NetHide and evaluated it on re-
alistic topologies. Our results show that NetHide is able
(o obfuscate large topologies (> 150 nodes) while pre-
serving near-perfect debugging capabilities. In particu-
lar, we show that operators can still precisely trace back
> 90% of link failures despite obfuscation.

1 Introduction

Botnet-driven Distributed Denial-of-Service (DDoS) at-
tacks constitute one of today’s major Internet threats [1,
2,5, 10]. Such attacks can be divided in two categories
depending on whether they target end-hosts and services
(volume-based attacks) or the network infrastructure it-
self (link-flooding attacks, LFAs).

Volume-based attacks are the simplest and work by
sending massive amounts of data to selected targets. Re-
cent examples include the 1.2 Thps DDoS attack against
Dyn’s DNS service [6] in October 2016 and the 1.35
Tbps DDoS attack against GitHub in February 2018 [8].
While impressive, these attacks can be mitigated today
by diverting the incoming tratfic through large CDN in-
frastructures [23]. As an illustration, CloudFlare’s infras-
tructure can now mitigate volume-based attacks reaching
Terabits per second [18].

Link-flooding attacks (LFAs) [26, 38] are more so-
phisticated and work by having a botnet generate low-
rate flows between pairs of bots or towards public ser-
vices such that all of these flows cross a given set of
network links or nodes, degrading (or even preventing)
the connectivity for all services using them. LFAs are
much harder to detect as: (i) traffic volumes are rela-
tively small (10 Gbps or 40 Gbps attacks are enough to
kill most Internet links [31]); and (ii) attack flows are
indistinguishable from legitimate traffic. Representative
examples include the Spamhaus attack which flooded se-
lected Internet eXchange Point (1XP) links in Europe and
Asia |4,7,12).

Unlike volume-based attacks, performing an LFA re-
quires the attacker to know the topology and the forward-
ing behavior of the targeted network. Without this knowl-
edge, an attacker can only “guess” which flows share
a common link, considerably reducing the attack’s effi-
ciency. As an illustration, our simulations indicate that
congesting an arbitrary link without knowing the topol-
ogy requires 5 times more flows, while congesting a spe-
cific link is order of magnitudes more difficult.

Nowadays, attackers can easily acquire topology
knowledge by running path tracing tools such as
tracercute [17]. In fact, previous studies have
shown that entire topologies can be precisely mapped
with t raceroute provided enough vantage points are
used [37], a requirement easily met by using large-scale
measurement platforms (e.g., RIPE Atlas [16]).
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pForest: In-Network Inference with Random Forests
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Abstract

The concept of “self-driving networks™ has recently emerged
as a possible solution to manage the ever-growing complex-
ity of modern network infrastructures. In a self-driving net-
work, network devices adapt their decisions in real-time by
observing network traffic and by performing in-line inference
according to machine learning models. The recent advent of
programmable data planes gives us a unique opportunity to
implement this vision. One open question though is whether
these devices are powerful enough to run such complex tasks?

We answer positively by presenting pForest, a system for
performing in-network inference according to supervised ma-
chine learning models on top of programmable data planes.
The key challenge is to design classification models that fit
the constraints of programmable data planes (e.g., no floating
points, no loops, and limited memory) while providing high
accuracy. pForest addresses this challenge in three phases:
(i) it optimizes the features selection according to the capabil-
ities of programmable network devices; (i) it trains random
forest models tailored for different phases of a flow; and (iii) it
applies these models in real time, on a per-packet basis.

We fully implemented pForest in Python (training), and
in P44 (inference). Our evaluation shows that pForest can
classify traffic at line rate for hundreds of thousands of flows,
with an accuracy that is on-par with software-based solutions.
We further show the practicality of pForest by deploying it on
existing hardware devices (Barefoot Tofino).

1 Introduction

What if networks could “self-manage” instead of having oper-
ators painstakingly specifying their behavior? Behind this
vision—perhaps a bit futuristic—lies the concept of Self-
Driving Networks [24,25,36,37]. In a self-driving network,
network devices measure, analyze, and adapt to the network
conditions in real-time, without requiring off-path analysis.
Akin to self-driving cars, the idea of having networks “driv-
ing themselves” is appealing in terms of performance, re-

liability, and security. As an illustration, a self-driving net-
work could optimize application performance (e.g., maximize
bitrate, minimize rebuffering) by: (i) observing lower-level
metrics (e.g., delay, throughput); and (ii) using a predictive
model of the application behavior to decide the best action to
take (e.g., increase the flow priority). Similarly, self-driving
networks could swiftly detect network problems by observing,
say TCP retransmissions, and reroute traffic upon detecting
statistical anomalies [31]. Self-driving networks could also
improve security by classifying traffic — even if it is encrypted
— or by detecting subtle DDoS attacks.

All these applications require network devices to support
two key building blocks: (i) the ability to derive precise mea-
surements; and (i) the ability to perform complex inference—
both, directly in the data plane. While this might seem un-
realistic, the advent of fully programmable data planes (e.g.,
Barefoot Tofino [2], Netronome NICs [50]) offers us an op-
portunity to implement such features. The question is though:
Are programmable data planes powerful enough?

pForest We answer this question positively by describing
pForest, a system which enables programmable data planes to
perform real-time inference, accurately and at scale, accord-
ing to supervised machine learning models. pForest takes as
input a labeled dataset (e.g., an annotated traffic trace) and
automatically trains a P4-based [21] online classifier that
can run directly in the data plane (on existing hardware) and
infer labels on live traffic. Despite being performed in the
data plane, pForest inference is accurate—as accurate as if it
was done in software using state-of-the-art machine learning
frameworks [11]. As an online classifier, pForest further opti-
mizes for the classification “speed”, i.e. it classifies flows as
early as possible (after few packets).

‘We stress that pForest is a general framework that enables
to perform in-network inference. As such, it does not remove
the need to obtain a representative training dataset. As for
any machine learning model, poor input data will result in
poor performance. We consider the problem of building a
representative dataset as orthogonal to this paper.
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IP forwarding

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200

& /7. s ./ & s/ s &/
| | | | | |

LAN 1 LAN 2

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table



An IP router has

four main ingredients
Lookup a forwarding table
Update the destination MAC
Decrement TTL

Forward packets to output ports



A P4 program consists of three basic parts

Parser Match-Action Pipeline Deparser
29 > B> >
or Rl 41
Qp > > >
> > >




Parser Match-Action Pipeline Deparser
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L AAAAA/
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Programmer declares the headers
that should be recognizec
and their order in the pack
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Match-Action Pipeline

L AAAAA

]
YYVVVY

Programmer defines the tables

and the processing logic

Deparser




Match-Action Pipeline

1
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1
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]
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Deparser

l

Programmer declares
how the output packet
will look on the wire



v1switch( __J
MyParser(),

MyVerifyChecksum(),

MyIngress(),
MyEgress(),

MyComputeChecksum(),
MyDeparser () —

) main;

Match-Action Pipeline

L AAAAA

\AAAAA/

\AAAAA

Deparser




#include <core.p4>
#include <vlmodel.p4>

const bit<1l6> TYPE_IPV4 = 0x800;
typedef bit<32> ip4Addr_t;
header 1pv4_t {..}

struct headers {..}

parser MyParser(..) {

state start {..}

state parse_ethernet {..}
y state parse_ipv4 {..}

control MyIngress(..) {
action ipv4_forward(.) {..}

table 1pv4_lpm {..}

apply {
if (D) {.}

}

control MyDeparser(..) {..}

v1switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress (),
MyComputeChecksum(),
MyDeparser ()

) main;

Libraries

Declarations

Parse packet headers

Control flow
to modify packet

Assemble
modified packet

‘main()’”



Match-Action Pipeline Deparser

Parser
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AAAAAA
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AAAAAA
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The parser uses a state machine
to map packets into headers and metadata

Packet Headers and metadata

a:b:c:d — 1:2:3:4 /@ meta {ingress_port: 1, ..}

ethernet {srcAddr: a:b:c:d, ..}

1.2.3.4 - 5.6.7.8

ipv4 {srcAddr: 1.2.3.4, .}
1234 — 56789
tcp {srcpPort: 12345, ..}




The parser has three predefined states:
start, accept and reject

start

¢
h
o
g
</

[\

accept reject

parsing parsing
success failure



parser MyParser(..) {

state start {
transition parse_ethernet;

start }
state parse_ethernet {
l packet.extract(hdr.ethernet);
transition select(Chdr.ethernet.etherType) {
O0x800: parse_ipv4;
parse_ethernet default: accept;
}
}
state parse_ipv4d {
packet.extract(Chdr.ipv4);
parse_ipv4 transition selectChdr.ipv4.protocol) {

6: parse_tcp;

17: parse_udp;
z/// \\\N default: accept;
}
}

state parse_tcp {

packet.extract(Chdr.tcp);
X transition accept;
}

state parse_udp {
packet.extract(hdr.udp);
transition accept;

}
}

parse_tcp parse_udp

accept reject
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Basic building blocks
of P4 programs

Control flow

Actions

Tables

describes how packets should be processed

fragments manipulating headers fields/metadata

map user-defined keys with actions



Control flow describes how packets should be processed

Actions

Tables



Control flow expresses an imperative program
which describes how packets are processed

Headers and metadata from parser

control MyIngress(inout headers hdr,
1nout metadata meta,
1nout standard_metadata_t std_meta) {

bi1t<9> port; Variable declaration

apply {
port = 1
std_meta.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = 0x2;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

} Control flow



Control flow

Actions fragments manipulating headers fields/metadata

Tables



Actions allow to re-use code

control MyIngress(inout headers hdr,
1nout metadata meta,
1nout standard_metadata_t std_meta) {

action i1pv4_forward(macAddr_t dstAddr,
egressSpec_t port) {
std_meta.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

apply { ‘
1pv4_forward(0x123, 1);

}
}



Control

Control flow describes how packets should be processed

Actions fragments manipulating headers fields/metadata

Tables map user-defined keys with actions



Control Plane

A

Key

Headers

& Meta

Match
Key

Default

' ID

Action
Data

—

Headers and
Metadata

Hit
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DB Action
Code IR

T

Data

—

Headers
& Meta



Table name

Field(s) to match
table {

key = {
e Match type
}

actions = {

Possible actions

}
size = ; Max. # entries in table
default_action = ; Default action

}



Example: IP forwarding table

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200

& s/, s @&/ . s/ T/\ T/
| | | |

LAN 1 LAN 2

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table



Destination IP address

Key



Longest prefix match

Match
Key




1: ipv4_forward(mac, port)
2:drop()

Action
ID Data




1pv4_ftorward(mac, port)
drop()

Action

Code




Table name

table 1pv4_lpm {
key = {
hdr.ipv4.dstAddr: Tpm; Longest prefix match
}

actions = {
1pv4_forward;

Destination IP address

Possible actions

drop;

}

size = 1024: Max. # entries in table
default_action = drop(Q); Default action

}



Example: IP forwarding table

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200
~ &= g 4=/ d-s/d4- /7 & -/
| | | | | |
LAN 1 === 1 =T, 2 === LAN 2
A ‘ N Evg?ﬂ3>a
01:01:01:01:01:01 02:02:02:02:02:02

action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;



Example: IP forwarding table

1.2.3.4 1.2.3.5 1.2.3.254 5.6.7.1 5.6.7.2 5.6.7.200
. /7S . s7 ./ . /7S, . s/s7 ./
| | | | | |
LAN 1 LAN 2
01:01:01:01:01:01 02:02:02:02:02:02

1.2.3.0/24 <+—
5.6.7.0/24 —>

forwarding table



Control Plane

|

table_add ipv4_1lpm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1
table_add ipv4_1lpm ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

1.2.3.0/24
5.6.7.0/24
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The Deparser assembles the headers back
into a well-formed packet

Headers Deparser Packet

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, ..} 0> o>

tcp {srcpPort: 12345, ..}




Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, ..} > o>

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet) ;



Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);



Headers Deparser Packet

a:b:c:d = 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

1234 — 56789

tcp {srcport: 12345, ..}

control MyDeparser(packet_out packet, in headers hdr) {
apply {

packet.emit(hdr.ethernet) ;

packet.emit(hdr.ipv4);
packet.emit(hdr.tcp);



Headers Deparser Packet

a:b:c:d — 1:2:3:4

ethernet {srcAddr: a:b:c:d, ..}

ipv4 {srcAddr: 1.2.3.4, .} o> o> 1.2.3.4 - 5.6.7.8

1234 — 56789

tcp {srcport: 12345, ..}
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