
Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 8 2019

Materials inspired from p4.org

nsg.ee.ethz.ch

http://p4.org
https://nsg.ee.ethz.ch

Last week on

Advanced Topics in Communication Networks

P4

environment

P4

language

What is needed to

program in P4?

P4

in practice

P416 introduces the concept of an architecture

P4 ArchitectureP4 Target

a model of a specific
hardware implementation

an API to program a target

We'll rely on a simple P416 switch architecture (v1model)
which is roughly equivalent to "PISA"

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdfsource

v1model/
simple switch

Each architecture also defines a list of "externs",
i.e. blackbox functions whose interface is known

Think of externs as Java interfaces

Most targets contain specialized components

which cannot be expressed in P4 (e.g. complex computations)

only the signature is known, not the implementation

At the same time, P416 should be target-independent

In P414 almost 1/3 of the constructs were target-dependent

≠ architectures → ≠ metadata & ≠ externs

Copyright © 2018 – P4.org

NetFPGA-SUME

96

http://isfpga.org/fpga2018/slides/FPGA-2018-P4-tutorial.pdfmore info

P4

environment

P4

language

Deeper dive into

the language constructs (*)

P4

in practice

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html(*) full info

P416 is a statically-typed language with
base types and operators to derive composed ones

no values, used in few restricted circumstancesvoid

used to signal errorserror

describes ways to match table keysmatch_kind

Boolean valuebool

Bit-string of width W bit<W>

Signed integer of width Wint<W>

Bit-string of dynamic length ≤Wvarbit<W>

not supportedfloat

not supportedstring

Header Header stack Header union

header Ethernet_h {
 bit<48> dstAddr;
 bit<48> srcAddr;
 bit<16> etherType;
}

header Mpls_h {
 bit<20> label;
 bit<3> tc;
 bit bos;
 bit<8> ttl;
}

Mpls_h[10] mpls;

header_union IP_h {
 IPv4_h v4;
 IPv6_h v6;
}

Array of up to  
10 MPLS headers

Either IPv4 or IPv6  
header is present

P416 is a statically-typed language with
base types and operators to derive composed ones

only one alternative

Struct Tuple

struct standard_metadata_t {

 bit<9> ingress_port;

 bit<9> egress_spec;

 bit<9> egress_port;

 …

}

tuple<bit<32>, bool> x;

x = { 10, false };

Unordered collection 
of named members

Unordered collection 
of unnamed members

P416 is a statically-typed language with
base types and operators to derive composed ones

P4 operations are similar to C operations and vary
depending on the types (unsigned/signed ints, …)

arithmetic operations

logical operations

non-standard operations

+, –, *

~, &, |, ^, >>, <<

[m:l]

++

Bit-slicing

Bit concatenation

no division and modulo

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.htmlmore info

(can be approximated)

Variables have local scope and their values is
not maintained across subsequent invocations

variables cannot be used to maintain state

between different network packets

important

instead
to maintain state

you can only use two stateful constructs

tables

extern objects

modified by control plane

modified by control plane &

data plane

This week on

Advanced Topics in Communication Networks

stateful

programming

statefulness

in practice

probabilistic

data structures

How do you build

stateful apps?

fast network

convergence

bloom

filters

part 1[USENIX NSDI'19]

stateful

programming

statefulness

in practice

probabilistic

data structures

How do you build

stateful apps?

Stateful objects in P4

Table

Register

Counter

managed by the control plane

store arbitrary data

count events

Meter

…

rate-limiting

…

externs in v1model

Stateful objects in P4

Table

Register

Counter

managed by the control plane

store arbitrary data

count events

Meter

…

rate-limiting

…

externs in v1model

Registers are useful for storing  
(small amounts of) arbitrary data

<Type>

r.write(…)

r.read(…)

Registers are assigned in arrays

N

0
1
2
3
4
5
6
7

<Type>

r.write(0,value)

r.read(result,0)

register<Type>(N) r;

Example: Calculating inter packet gap

register<bit<48>>(16384) last_seen;

action get_inter_packet_gap(out bit<48> interval, bit<32> flow_id)

{

 bit<48> last_pkt_ts;

 /* Get the time the previous packet was seen */

 last_seen.read(last_pkt_ts, flow_id);

 /* Calculate the time interval */

 interval = standard_metadata.ingress_global_timestamp – last_pkt_ts;

 /* Update the register with the new timestamp */

 last_seen.write(flow_id, standard_metadata.ingress_global_timestamp);

 ...

}

Example: Stateful firewall

Only allow incoming
packets if they belong to

an established connection

Example: Stateful firewall

TCP 
Packet

from

internal?
SYN flag?

add flow  
to register

forward
flow in

register?

drop

yes yes

no

no

yes

no

Example: Stateful firewall
register to memorize  

established connections

add to register if it 
it is a SYN packet 

from internal

drop if the packet does not
belong to a known flow and  

comes from outside

control MyIngress(...) {
 register<bit<1>>(4096) known_flows;
 ...
 apply {
 meta.flow_id = ... // hash(5-tuple)
 if (hdr.ipv4.isValid()){
 if (hdr.tcp.isValid()){
 if (standard_metadata.ingress_port == 1){
 if (hdr.tcp.syn == 1){
 known_flows.write(meta.flow_id, 1);
 }
 }

 if (standard_metadata.ingress_port == 2){
 known_flows.read(meta.flow_is_known, meta.flow_id);
 if (meta.flow_is_known != 1){
 drop(); return;
 }
 }
 }
 ipv4_lpm.apply();
 }
 }
}

Stateful objects in P4

Table

Register

Counter

managed by the control plane

store arbitrary data

count events

Meter

…

rate-limiting

…

externs in v1model

Counters are useful for… counting

Type

c.count(…)

c.read(…)

only from the  
control plane

Counters can be of three different types

Type

c.count(…)

packets

bytes

packets_and_bytes

Like registers, counters 
are assigned in arrays

N

0
1
2
3
4
5
6
7

Type

c.count(0)

counter(N,Type) c;

use the ingress port as counter index

Example: Counting packets and bytes  
arriving at each port

control MyIngress(...) {

 counter(512, CounterType.packets_and_bytes) port_counter;

 apply {

 port_counter.count((bit<32>)standard_metadata.ingress_port);

 }

}

use the ingress port as counter index

Example: Reading the counter values 
from the control plane

control MyIngress(...) {

 counter(512, CounterType.packets_and_bytes) port_counter;

 apply {

 port_counter.count((bit<32>)standard_metadata.ingress_port);

 }

}

Control Plane

RuntimeCmd: counter_read MyIngress.port_counter 1

MyIngress.port_counter[1]= BmCounterValue(packets=13, bytes=1150)

Direct counters are a special kind of counters  
that are attached to tables

Match Action
Key ID Data

Default

Counter

Each entry has a counter
cell that counts when the
entry matches

Example: Counting packets and bytes  
arriving at each port using a direct counter

attach counter to table

control MyIngress(...) {

 direct_counter(CounterType.packets_and_bytes) direct_port_counter;

 table count_table {

 key = {

 standard_metadata.ingress_port: exact;

 }

 actions = {

 NoAction;

 }

 default_action = NoAction;

 counters = direct_port_counter;

 size = 512;

 }

 apply {

 count_table.apply();

 }

}

Stateful objects in P4

Table

Register

Counter

managed by the control plane

store arbitrary data

count events

Meter

…

rate-limiting

…

externs in v1model

Meters

Stream of packets Meter Stream of colored packets

Meters

Exceeds the PIR

Does not exceed PIR

but exceeds CIR

Does not exceed

PIR and CIR
Stream of packets

PIR Peak Information Rate

CIR Committed Information Rate

[bytes/s] or [packets/s]

[bytes/s] or [packets/s]

Parameters:

https://tools.ietf.org/html/rfc2698more info

Meter

Like registers and counters, meters 
are assigned in arrays

N

0
1
2
3
4
5
6
7

Type

m.execute(0)

meter(N,Type) m;

Example: Using a meter for rate-limiting

max. 1 packet/s

Example: Using a meter for rate-limiting

IP Packet

m_read m_filter

11:11:… 0
22:22:… 1

33:33:… 2

44:44:… 3

NoAction
drop

drop

Map the sender
(source MAC address)
to a meter index

Map the meter tag 
to a policy

Example: Using a meter for rate-limiting

handle packets 
depending on 

meter tag

packet meter

execute meter

control MyIngress(...) {

 meter(32w16384, MeterType.packets) my_meter;

 action m_action(bit<32> meter_index) {

 my_meter.execute_meter<bit<32>>(meter_index, meta.meter_tag);

 }

 table m_read {

 key = { hdr.ethernet.srcAddr: exact; }

 actions = { m_action; NoAction; }

 ...

 }

 table m_filter {

 key = { meta.meter_tag: exact; }

 actions = { drop; NoAction; }

 ...

 }

 apply {

 m_read.apply();

 m_filter.apply();

 }

}

Direct meters are a special kind of meters  
that are attached to tables

Match Action
Key ID Data

Default

Meter

Each entry has a meter
cell that is executed  
when the entry matches

Example: Using a meter for rate-limiting

direct meter

read meter

attach meter to table

control MyIngress(...) {

 direct_meter<bit<32>>(MeterType.packets) my_meter;

 action m_action(bit<32> meter_index) {

 my_meter.read(meta.meter_tag);

 }

 table m_read {

 key = { hdr.ethernet.srcAddr: exact; }

 actions = { m_action; NoAction; }

 meters = my_meter;

 ...

 }

 table m_filter { ... }

 apply {

 m_read.apply();

 m_filter.apply();

 }

}

Summary

Object

Table

Register

Counter

Meter

read

apply()

read()

—

execute()

modify/write

—

write()

count()

read

yes

yes

yes

configuration only

modify/write

yes

yes

reset

Data plane interface Control plane interface

stateful

programming

statefulness

in practice

probabilistic

data structures

fast network

convergence

[USENIX NSDI'19]

stateful

programming

statefulness

in practice

probabilistic

data structures

bloom

filters

part 1

Programming more advanced stateful
data structures

Programming more advanced stateful
data structures

We are provided with built-in stateful data structures
such as arrays of registers, counters or meters

We need to deal with severe limitations
such as a limited number of operations and memory

Programming more advanced stateful
data structures

We are provided with built-in stateful data structures
such as arrays of registers, counters or meters

We need to deal with severe limitations
such as a limited number of operations and memory

Today: how can we implement a set with its usual methods
i.e., add an element, membership query, delete an
element, lookup, listing

Deterministic Probabilistic

strategy #1 strategy #2

output

number of required
operations Probabilistic Deterministic

There are two common strategies
to implement a set

Deterministic Probabilistic

strategy #1 strategy #2

output

number of required
operations Probabilistic Deterministic

There are two common strategies
to implement a set

Intuitive implementation of a set

Intuitive implementation of a set
Separate-chaining

0

10

TCP

;

;

;
;

Hello

Go

You

Fire

Fine

TCP

P4

Port

0

10

TCP

Intuitive implementation of a set
Separate-chaining

N elements and M cells

 list size
average N/M
worse-case N

Intuitive implementation of a set
Separate-chaining

Con: only works in hardware if there is a low
number of elements (e.g. < 100)

Pros: accurate and fast in the average case

Intuitive implementation of a set
Separate-chaining

Deterministic Probabilistic

strategy #1 strategy #2

output

number of required
operations Probabilistic Deterministic

There are two common strategies
to implement a set

0

10

0

0
0

0

0

0

0
0

0

0
1-bit cells

A simple approach for insertions
and membership queries

0

10

TCP

insert "TCP"

1

0

0
0

0

0

0

0

0

0
1-bit cells

A simple approach for insertions
and membership queries

0

10

Hello

insert "Hello"

1

1

0
0

0

0

0

0

0

0
1-bit cells

A simple approach for insertions
and membership queries

0

10

Fine

insert "Fine"

1

1

1

0
0

0

0

0

0

0

1-bit cells

A simple approach for insertions
and membership queries

0

10

Hello

is "Hello" in
the set?

1

1

1

1 = YES
0
0

0

0

0

0

0

1-bit cells

A simple approach for insertions
and membership queries

0

10

Bye

is "Bye" in
the set?

1

1

1

0
0

0

0

0

0

0

0 = NO

1-bit cells

A simple approach for insertions
and membership queries

0

10

Hello

is "P4" in
the set?

1

1

1

0
0

0

0

0

0

0

1 = YES
False Positive!

1-bit cells

A simple approach for insertions
and membership queries

N elements and M cells

probability of an element to be
mapped into a particular cell

probability of an element not to
be mapped into a particular cell

probability of a cell to be 0

1

M

false positive rate (FPR)

(1� 1

M
)N

1� (1� 1

M
)N

false negative rate 0

A simple approach for insertions
and membership queries

1� 1

M

of elements

1000 9.5%

A simple approach for insertions
and membership queries

1000 1%

FPR# of cells

10000
100000

Con: roughly 100x more cells are required than
the number of element we want to store
for a 1% false positive rate

A simple approach for insertions
and membership queries

Pros: simple and only one operation per
insertion or query

0

10

0

0
0

0

0

0

0
0

0

0
1-bit cells

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

0

10

TCP

insert "TCP"

1

0

0

0

0

0

0

0

TCP

TCP
hash #1

hash #2

hash #3
1

1

1-bit cells

0

0

0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

0

10

Hello

insert "Hello"

1

0

0

0

0

0

Hello

Hello
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

0

0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

0

10

Fine

insert "Fine"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

0 1

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

0

10

Fine

insert "Fine"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

1

An element is considered in
the set if all the hash values
map to a cell with 1

An element is not in the set if
at least one hash value maps to
a cell with 0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

is "Hello" in
the set?

0

10

Hello

1

0

0

0

0Hello

Hello
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

Yes

An element is not in the set if
at least one hash value maps to
a cell with 0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

1

An element is considered in
the set if all the hash values
map to a cell with 1

0

10

Bye

1

0

0

0

0Bye

Bye
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

is "Bye" in
the set?

No it isn’t

An element is not in the set if
at least one hash value maps to
a cell with 0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

1

An element is considered in
the set if all the hash values
map to a cell with 1

0

10

Bye

1

0

0

0

0Bye

Bye
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

is "Fire" in
the set?

An element is not in the set if
at least one hash value maps to
a cell with 0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

1

Yes

False Positive!

An element is considered in
the set if all the hash values
map to a cell with 1

N elements, M cells and K hash functions

probability that one hash function
returns the index of a particular cell

probability that one hash function does
not return the index of a particular cell

probability of a cell to be 0

false positive rate

false negative rate

1

M

0

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

1� 1

M

(1� 1

M
)KN

(1� (1� 1

M
)KN)K

of elements

1000 0.82%
1000 0%

FPR# of cells

10000
100000

hash functions

7
7 ⇡

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

Con: Requires slightly more operations than the
simple approach (7 hashes instead of just 1)

Pro: consumes roughly 10x less memory than
the simple approach

Bloom Filters: a more memory-efficient approach
for insertions and membership queries

Dimension your Bloom Filter

Number of

operations

Memory

False Positive

Rate

Tradeoff

Dimension your Bloom Filter

N elements
M cells
K hash functions
FP false positive rate

Dimension your Bloom Filter

FP = (1� (1� 1

M
)KN)K ⇡ (1� exp(�kn/m))k

asymptotic approx.

with calculus you can
dimension your bloom filter

N elements
M cells
K hash functions
FP false positive rate

⇡ (1� e�KN/M)K

Dimension your Bloom Filter

N = 1000
M = 10000
K hash functions
FP false positive rate

K (number of hash functions)

False Positive
Rate (%)

0 10 20

10

5

Dimension your Bloom Filter

N = 1000
M = 10000
K hash functions
FP false positive rate

K (number of hash functions)

False Positive
Rate (%)

0 10 20

10

5

more chance to find
a 0 bit for an element
not in the set

increases the
fraction of 0 bits

Dimension your Bloom Filter

N = 1000
M = 10000
K hash functions
FP false positive rate

K (number of hash functions)

False Positive
Rate (%)

0 10 20

10

5

more chance to find
a 0 bit for an element
not in the set

increases the
fraction of 0 bits

there is always a
global minimum when
 found
by taking the derivative
of

K = ln 2 ⇤ (M/N)

7

⇡ (1� e�KN/M)K

Implementation of a Bloom Filter in P416

You will have to use hash functions

v1model enum HashAlgorithm {
 crc32,
 crc32_custom,
 crc16,
 s,
 random,
 identity,
 csum16,
 xor16
}

extern void hash<O, T, D, M>(out O result,
in HashAlgorithm algo, in T base, in D data, in M max);

more info https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

Implementation of a Bloom Filter in P416

You will have to use hash functions, as well as registers

v1model

more info https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

extern register<T> {

 register(bit<32> size);

 void read(out T result, in bit<32> index);
 void write(in bit<32> index, in T value);
}

Implementation of a Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<1>>(NB_CELLS) bloom_filter;

Implementation of a Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<1>>(NB_CELLS) bloom_filter;

 apply {
hash(meta.index1, HashAlgorithm.my_hash1, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

hash(meta.index2, HashAlgorithm.my_hash2, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

Implementation of a Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<1>>(NB_CELLS) bloom_filter;

 apply {
hash(meta.index1, HashAlgorithm.my_hash1, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

hash(meta.index2, HashAlgorithm.my_hash2, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

if (meta.to_insert == 1) {
bloom_filter.write(meta.index1, 1);
bloom_filter.write(meta.index2, 1);

}

if (meta.to_query == 1) {
bloom_filter.read(meta.query1, meta.index1);
bloom_filter.read(meta.query2, meta.index2);

if (meta.query1 == 0 || meta.query2 == 0) {
meta.is_stored = 0;

}
else {
meta.is_stored = 1;

}
}

}
}

http://meta.is
http://meta.is

Implementation of a Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<1>>(NB_CELLS) bloom_filter;
 apply {

hash(meta.index1, HashAlgorithm.my_hash1, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

hash(meta.index2, HashAlgorithm.my_hash2, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

if (meta.to_insert == 1) {
bloom_filter.write(meta.index1, 1);
bloom_filter.write(meta.index2, 1);

}

if (meta.to_query == 1) {
bloom_filter.read(meta.query1, meta.index1);
bloom_filter.read(meta.query2, meta.index2);

if (meta.query1 == 0 || meta.query2 == 0) {
meta.is_stored = 0;

}
else {

meta.is_stored = 1;
}

}
}

}

Everything in bold
red must be adapted
for your program

Depending on the hardware limitations,
splitting the bloom filter might be required

M cells are split into M/K
disjoint groups

An element is hashed to
K cells, one in each group

One hash function per group

Same performance, may be
easier to implement or parallelize

Because deletions are not possible, the controller
may need to regularly reset the bloom filters

Resetting a bloom filter takes some time
during which it is not usable

Common trick: use two bloom filters and use one when
the controller resets the other one

Deterministic Probabilistic

strategy #1 strategy #2

output

number of required
operations Probabilistic Deterministic

So far we have seen how to do insertions and
membership queries

Bloom Filters

However Bloom Filters do not handle deletions

0

10

Fine

insert "Fine"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3
1

1

1-bit cells

1

1

1

insert "TCP"

TCP

TCP

TCP
hash #1

hash #2

hash #3

0

10

Fine

delete "Fine"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3
1

0

1-bit cells

1

0

0

insert "TCP"

TCP

TCP

TCP
hash #1

hash #2

hash #3

If deleting an element
means resetting 1s to 0s,
then deleting "Fine" also
deletes "TCP"

However Bloom Filters do not handle deletions

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

0

10

TCP

insert "TCP"

1

0

0

0

0

0

0

0

TCP

TCP
hash #1

hash #2

hash #3
1

1

4-bit cells

0

0

0

To add an element, increment
the corresponding counters

0

10

Hello

insert "Hello"

1

0

0

0

0

0

Hello

Hello
hash #1

hash #2

hash #3
1

1

4-bit cells

1

1

2

To add an element, increment
the corresponding counters

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

0

10

Fine

insert "Fine"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3
2

2

4-bit cells

1

2

1

1

1

To add an element, increment
the corresponding counters

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

0

10

Fine

delete "TCP"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3

2

4-bit cells

1

2

1

To delete an element, decrement
the corresponding counters

To add an element, increment
the corresponding counters1

0

2 1

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

0

10

Fine

delete "TCP"

1

0

0

0

0Fine

Fine
hash #1

hash #2

hash #3

2

4-bit cells

1

2

1

To delete an element, decrement
the corresponding counters

To add an element, increment
the corresponding counters1

0

2 1
All of our prior analysis for
standard bloom filters applies
to counting bloom filters

But we can easily extend them to handle deletions
This extended version is called a Counting Bloom Filter

Counting Bloom Filters do handle deletions
at the price of using more memory

Counting Bloom Filters do handle deletions
at the price of using more memory

Counters must be large enough to avoid overflow
If a counter eventually overflows, the filter may yield
false negatives

Counting Bloom Filters do handle deletions
at the price of using more memory

Counters must be large enough to avoid overflow
If a counter eventually overflows, the filter may yield
false negatives

Poisson approximation suggests 4 bits/counter
The average load (i.e.,) is assuming
With N=10000 and M=80000 the probability that some
counter overflows if we use b-bit counters is at most

NK

M
ln 2 K = ln 2 ⇤ (M/N)

M ⇤ Pr(Poisson(ln 2) � 2b) = 1.78e�11

Implementation of a Counting Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<4>>(NB_CELLS) bloom_filter;

 apply {
hash(meta.index1, HashAlgorithm.my_hash1, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

hash(meta.index2, HashAlgorithm.my_hash2, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

// Add a new element if not yet in the set
bloom_filter.read(meta.query1, meta.index1);
bloom_filter.read(meta.query2, meta.index2);

if (meta.query1 == 0 || meta.query2 == 0) {
bloom_filter.write(meta.index1, meta.query1 + 1);
bloom_filter.write(meta.index2, meta.query2 + 1);

}
}

}

Add a new element

Implementation of a Counting Bloom Filter in P416

with 2 hash functions

control MyIngress(…) {

register register<bit<32>>(NB_CELLS) bloom_filter;

 apply {
hash(meta.index1, HashAlgorithm.my_hash1, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

hash(meta.index2, HashAlgorithm.my_hash2, 0,
{meta.dstPrefix, packet.ip.srcIP}, NB_CELLS);

// Delete a element only if it is in the set
bloom_filter.read(meta.query1, meta.index1);
bloom_filter.read(meta.query2, meta.index2);

if (meta.query1 > 0 && meta.query2 > 0) {
bloom_filter.write(meta.index1, meta.query1 - 1);
bloom_filter.write(meta.index2, meta.query2 - 1);

}
}

}

Delete an element

Deterministic Probabilistic

strategy #1 strategy #2

output

number of required
operations Probabilistic Deterministic

So far we have seen how to do insertions, deletions
and membership queries

Bloom Filters
Counting Bloom Filters

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Each cell contains three fields

count which counts the number
of entries mapped to this cell

keySum which is the sum of all
the keys mapped to this cell

valueSum which is the sum of all
the values mapped to this cell

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

For each hash function
hash the key to find the index

Then at this index
increment the count by one
add key to keySum
add value to valueSum

Add a new key-value pair (assuming it is
not in the set yet)

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

For each hash function
hash the key to find the index

Then at this index
subtract one to the count
subtract key to keySum
subtract value to valueSum

Delete a key-value pair (assuming it is in the set)

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

0

1
0

1

1

0

0

0

0

0

0

152

0

0

0

0

0

0

0

0

count keySum valueSum

152

insert
key:152 value:3

152

152
hash #1

hash #2

hash #3

152

152

3

3

3

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

1

1
1

2

1

0

0

0

0

0

7

152

7

0

0

0

0

0

98

count keySum valueSum

7

insert
key:7 value:98

7

7
hash #1

hash #2

hash #3

159

152

3

101

3

98

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

50

insert
key:50 value:45

50

50
hash #1

hash #2

hash #3

209

202

48

146

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

The value of a key can be found
if the key is associated to at least
one cell with a count = 1

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Key-value pair lookup

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

209

202

48

146

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

209

202

48

146

48

7

lookup key:7

7

7
hash #1

hash #2

hash #3

Key 7 has the value 98

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

209

202

48

146

48

7

lookup key:50

7

7
hash #1

hash #2

hash #3

The value for the key 50
can’t be found

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Listing the IBLT

While there is an index for which count = 1
Find the corresponding key-value pair and return it
Delete the corresponding key-value pair

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Listing the IBLT

While there is an index for which count = 1
Find the corresponding key-value pair and return it
Delete the corresponding key-value pair

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Unless the number of iterations is very low, loops
can’t be implemented in hardware
The listing is done by the controller

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

209

202

48

146

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

0

0

0

0

0

98

98

count keySum valueSum

209

202

48

146

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Return key:7 value: 98

0

0

0

0

0

0

2
0

2

2

0

0

0

0

0

0

202

0

0

0

0

0

0

0

0

count keySum valueSum

202

202

48

48

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

Delete key:7 value: 98

0

0

0

0

0

0

2
0

2

2

0

0

0

0

0

0

202

0

0

0

0

0

0

0

0

count keySum valueSum

202

202

48

48

48

Invertible Bloom Lookup Tables (IBLT) stores key-value
pairs and allows for lookups and a complete listing

In this example, a
complete listing
is not possible

0

0

0

0

0

1

2
1

3

2

0

0

0

0

0

7

202

7

XORkeySum

209

202

In many settings, we can use XORs in place of sums
For example to avoid overflow issues

count

For further information about Bloom Filters, Counting
Bloom Filters and IBLT

Space/Time Trade-offs in Hash Coding
with Allowable Errors. Burton H. Bloom. 1970.

Network Applications of Bloom Filters: A Survey.
Andrei Broder and Michael Mitzenmacher. 2004.

Invertible Bloom Lookup Tables.
Michael T. Goodrich and Michael Mitzenmacher. 2015.

FlowRadar: A Better NetFlow for Data Centers
Yuliang Li et al. NSDI 2016.

Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 8 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

