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P4 hardware P4-based
target applications

How do we build a fast
reprogrammable switch?



“Programmable switches are 10-
100x slower than fixed-function
switches. They cost more and
consume more power.”

Conventional wisdom in networking

BAREFCOIT

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



How can we allow network programmability in the field,
at reasonable cost, and without sacrificing speed

supporting Tbhps of
backplane throughput



Let's look at a concrete design:
Reconfigurable Match Tables (RMT)
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ABSTRACT

In Software Defined Networking (SDN) the control plane
is physically separate from the forwarding plane. Control
software programs the forwarding plane (e.g., switches and
routers) using an open interface, such as OpenFlow. This
paper aims to overcomes two limitations in current switch-
ing chips and the OpenFlow protocol: i) current hardware
switches are quite rigid, allowing “Match-Action” processing
on only a fixed set of fields, and ii) the OpenFlow specifi-
cation only defines a limited repertoire of packet processing
actions. We propose the RMT (reconfigurable match ta-
bles) model, a new RISC-inspired pipelined architecture for
switching chips, and we identify the essential minimal set
of action primitives to specify how headers are processed in
hardware. RMT allows the forwarding plane to be changed
in the field without modifying hardware. As in OpenFlow,
the programmer can specify multiple match tables of arbi-
trary width and depth, subject only to an overall resource
limit, with each table configurable for matching on arbitrary
fields. However, RMT allows the programmer to modify all
header fields much more comprehensively than in OpenFlow.
Our paper describes the design of a 64 port by 10 Gb/s
switch chip implementing the RMT model. Our concrete
design demonstrates, contrary to concerns within the com-
munity, that flexible OpenFlow hardware switch implemen-
tations are feasible at almost no additional cost or power.

Categories and Subiect Descriptors

1. INTRODUCTION

To improve is to change; to be perfect is to change
often. Churchill

Good abstractions—such as virtual memory and time-
sharing—are paramount in computer systems because they
allow systems to deal with change and allow simplicity of
programming at the next higher layer. Networking has pro-
gressed because of key abstractions: TCP provides the ab-
straction of connected queues between endpoints, and IP
provides a simple datagram abstraction from an endpoint to
the network edge. However, routing and forwarding within
the network remain a confusing conglomerate of routing pro-
tocols (e.g., BGP, ICMP, MPLS) and forwarding behaviors
(e.g., routers, bridges, firewalls), and the control and for-
warding planes remain intertwined inside closed, vertically
integrated boxes.

Software-defined networking (SDN) took a key step in ab-
stracting network functions by separating the roles of the
control and forwarding planes via an open interface between
them (e.g., OpenFlow [27]). The control plane is lifted up
and out of the switch, placing it in external software. This
programmatic control of the forwarding plane allows net-
work owners to add new functionality to their network, while
replicating the behavior of existing protocols. OpenFlow has
become quite well-known as an interface between the con-
trol plane and the forwarding plane based on the approach
known as “Match-Action”. Roughly, a subset of packet bytes

[SIGCOMM'1 3]



The paper argues that flexibility does not come at
the price of performance or cost

Outline

e Conventional switch chips are inflexible
 SDN demands flexibility...sounds expensive...

e How do we do it: The RMT switch model
* Flexibility costs less than 15%




Enter...
Reconfigurable Match Tables (RMT)

Outline

e Conventional switch chip are inflexible

e How do we do it: The RMT switch model
* Flexibility costs less than 15%

 SDN demands flexibility...sounds expensive...
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What kind of switch architecture could support
flexibility and yet run at Terabits per second?

Throughput 1 Tbps
aggregate

Packet size 1000 bits
average

# operations 10

per packet (avg.)

10 billion op./second



Pipelined architectures organize processing through a
sequence of processing units and local memory

switching routing ACL tunnel
table table table table
packets
> switching — routing — ACL —>  tunnel
1 billion/sec
1 Ghz 1 Ghz 1 Ghz 1 Ghz

Processor Processor Processor Processor



For flexibility,
each processing unit/memory can be made generic

lookup lookup lookup lookup
table table table table
packets
> CPU — CPU — CPU — CPU
1 billion/sec
1 Ghz 1 Ghz 1 Ghz 1 Ghz

Processor Processor Processor Processor



Each CPU can process distinct packets, with up to
10 packets going through the pipeline simultaneously

lookup lookup lookup lookup
table table table table
PN
‘D5 p4 I p3 I p2 I pl I
packets . . . .

> CPU — CPU — CPU — CPU
1 billion/sec

1 Ghz 1 Ghz 1 Ghz 1 Ghz
processor processor processor processor



The runtime behavior of the parser & the match stages
is defined through the RMT abstract model

The RMT Abstract Model

e Parse graph
* Table graph




How do we implement in hardware
a programmable parser and a logical pipeline?



How do we implement in hardware

a programmable parser and a logical pipeline?
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ABSTRACT

All network devices must parse packet headers to decide
how packets should be processed. A 64 x 10 Gb/s Ethernet
switch must parse one billion packets per second to extract
fields used in forwarding decisions. Although a necessary
part of all switch hardware, very little has been written on
parser design and the trade-offs between different designs. Is
it better to design one fast parser, or several slow parsers?
What is the cost of making the parser reconfigurable in the
field? What design decisions most impact power and area?

In this paper, we describe trade-offs in parser design, iden-
tify design principles for switch and router designers, and
describe a parser generator that outputs synthesizable Ver-
ilog that is available for download. We show that i) packet
parsers today occupy about 1-2% of the chip, and ii) while
future packet parsers will need to be programmable, this
only doubles the (already small) area needed.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications

Keywords

Parsing; Design principles; Reconfigurable parsers

1. INTRODUCTION
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Figure 1: A TCP packet.

In practice, packets often contain many more headers.
These extra headers carry information about higher level
protocols (e.g., HTTP headers) or additional information
that existing headers do not provide (e.g., VLANs' in a col-
lege campus, or MPLS? in a public Internet backbone). It is
common for a packet to have eight or more different packet
headers during its lifetime.

To parse a packet, a network device has to identify the
headers in sequence before extracting and processing specific
fields. A packet parser seems straightforward since it knows
a priort which header types to expect.

In practice, designing a parser is quite challenging:

1. Throughput. Most parsers must run at line-rate,
supporting continuous minimum-length back-to-back
packets. A 10Gb/s Ethernet link can deliver a new
packet every 70ns; a state-of-the-art Ethernet switch
ASIC with 64 x 40 Gb/s ports must process a new

naclot overv 270 o

[ANCS'1 3]



Parsing is the (complex) process of identifying and
extracting the appropriate fields in a packet header

Throughput Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Dependency Parsing involves sequential processing
as headers typically point to the next one

Incompleteness Some headers do not even identify
the subsequent header

Heterogeneity Many header formats exist that
can appear in various orders/locations



A parser can be divided into two separate blocks:

header identification and field extraction

implements the parse graph's

state machine

__________________________ :
|
Header data * $ :

Header
Identification

Header types

Field
Extraction

} l & locations
Fields

Parser'

|

|

|

o :Accumulated

© 0|, fields To
[T E ' » Match
Eall Engine

:

|

|

|

extracts the chosen fields

from identified headers

Source: Design Principles for Packet Parsers, Gibb et al.



In 2 programmable parser, the two modules rely on

runtime information instead of hard-coded logic

stored in memory,
e.g. in RAM and/or TCAM

v

Header data

v

Header

Identification Extraction

Field

Fields

State & Next
header state

Field
locations

data

stores the bit sequences
that identify the headers

——p
Match index

Action
RAM

Source: Design Principles for Packet Parsers, Gibb et al.

t

acket Header

Vector

To

stores the next state,
the fields to extract,
and any other data (if any)

» Match
Engine



How do we implement in hardware
a programmable parser and a logical pipeline?



A compiler translates a given RMT logical pipeline
(specified in P4) into a physical one

RMT Logical to Physical Table Mapping

R AR

«J(V\

Action
Action

Table Graph




The compiler maps each individual logical stage
to one or more physical stage.

Physical Physical Physical
Stage 1 Stage 2 Stage n
3
ACL
IPV4 I AC
2 5
VLAN IPV6
7 TCP
4
L2S
8 UDP
Logical Logical Table 6
Table 1 L2D
) Ethertype




The RMT pipeline
in a few statistics

* 64 x 10Gb ports
— 960M packets/second
— 1GHz pipeline

* Programmable parser

e 32 Match/action stages

Our Switch Design

e Huge TCAM: 10x current chips
e 64K TCAM words x 640b

e SRAM hash tables for exact
matches

e 128K words x 640b
e 224 action processors per stage

e All OpenFlow statistics counters




Building a RMT pipeline is only 15% more expensive
than building a fixed-function switching pipeline

Outline

e Conventional switch chip are inflexible
 SDN demands flexibility...sounds expensive...
* How do | doit: The RMT switch model

* Flexibility costs less than 15%
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The biggest cost is the memory...
not the processing logic

Cost of Configurability:
Comparison with Conventional Switch

* Many functions identical: /O, data buffer, queueing...
* Make extra functions optional: statistics

* Memory dominates area
— Compare memory area/bit and bit count

e RMT must use memory bits efficiently to compete on cost

e Techniques for flexibility
— Match stage unit RAM configurability
— Ingress/egress resource sharing
— Table predication allows multiple tables per stage
— Match memory overhead reduction
— Match memory multi-word packing




That was just an academic paper
Let's look at a real flexible pipeline
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That was just an academic paper
Let's look at a real flexible pipeline

BAREFCO:T

NETWORKS

Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017
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Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Barefoot Tofino 6.5 Thps backplane
several billion packets per second at line rate

6.5Tb/s Tofino™ Summary

o State of the art design
o Single Shared Packet Buffer

o TSMC 16nm FinFET+ MAC + Serial /0

e Four Match+Action Pipelines o N
o Fully programmable PISA Embodiment Pipeline Pipeline
o All compiled programs run at line-rate. 0 Shared 1
o Up to 1.3 million IPv4 routes Packet

{ Buffer |
- - &

» Port Configurations MaidwAckn | T | MetcheActon
> 65 x 100GE/40GE il Al
o 130 x 50GE

o 260 x 25GE/10GE

e CPU Interfaces
o PCle: Gen3 x4/x2/x1
o Dedicated 100GE port

BAREFCOIT 20

NETWORKS Copyright © 2017 - Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Barefoot Tofino 6.5 Thps backplane
several billion packets per second at line rate

Tofino. Simplified Block Diagram

Reset /
Clocks CPU MAC

Control & configuration

Rx MACs Ingress
10/25/40/50/100 Pipeline Pipeline 10/25/40/50/100

Rx MACs Ingress
10/25/40/50/100 Pipeline

Ingress
Pipeline

Rx MACs Ingress Tx MAC S
10/25/40/50/100 Pipeline 10/25/40/50/100 .

"
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

BAREFOO’T Copyright © 2017 - Barefoot Networks

NETWORKS

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino relies on Packet Header Vector (PHV) to pass
states between stages

Packet Header Vector (PHV)

)

e A set of uniform containers that
carry the headers and metadata
along the pipeline

e Fields can be packed into any
container or their combination

e PHV Allocation step in the
compiler decides the actual
packing

J\

J \

32-bit
™ words

- -

\

BAREFCOIT

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino uses a folded pipeline in which the same stages
are used for both the ingress and the egress pipeline

Unified Pipeline

e There is no difference between ingress and egress processing
o The same blocks can be efficiently shared

Reset/

PCle CPU MAC

Control & configuration

Ingress
10/25/40/50/100 Pipeline

Tx MAC Egress
10/25/40/50/100 Pipeline

Traffic
Manager

Rx MACs Ingress
10/25/40/50/100 Pipeline

Tx MAC Egress
10/25/40/50/100 Pipeline

BAREFCOT

NETWORKS Copyright 201 Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



What's next?

Tofino 2: 12.8 Tbps (7 nm switching ASIC)
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https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/
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P4 hardware P4-based
target applications

What cool things
can we do with it?



Data plane Performance
programmability Monitoring

Applications offloading

Platforms Data plane
Correctness programmability

Management
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LossRadar: Fast Detection of Lost Packets in Data

scalable telemetry system that coordinates joint collection
and analysis of network traffic. Sonata provides a declarative
interface 10 express queries for  wide range of common

ta parti-

collect and analyze measurement data in real time, but they

either support a limited set of telemetry tasks [34, 40, or

they incur substantial processing nd storagecost s i
58].

telemetry tasks; to enable

rates and

tions each query across the stream processor and the data
I h i

Existing telemetry s,m.m Iyplcally irade of sclabi-

plane, g of the query as it
switch, at line rate. To optimize the use of limited switch

Sonata dynamically refines each query to ensure
that available resources focus only on traffic that satisfies the
query. Our evaluation shows that Sonata can support a wide
range of telemetry tasks while reducing the workload for the
stream processor by as much as seven orders of magnitude
compared to existing telemetry systems

ity for or vice versa. Telemetry systems
it rly on stecam processors lone e expressive bt not
scalable. For example, systems such as NetQRE (58] and
OpenSOC [40] can support a wide range of queries using
stream processors running on general-purpose CPUs, but
they incur substantial bandwidth and processing costs to do
so. Large networks can require performing as many as 100
million operations per second for rates of 1 Thps and packet
s of 1KB. Scaling to these rates using modern stream pro-
cessors is prohibitively costly due to the lower (2-3 orders of
magnitude) processing capacity per core [37, 39, 41, 59]. On

switches alone can scale to high traffic rates, but they give
to achieve this scalabilty. For example,
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« Networks — Network monitoring:
KEYWORDS

analytics, switches, st
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Conference, August 20-25, 2018, Budapest, Hungary. ACM, New York,

MM 2015

Marple [34] and OpenSketch [56],can perform telemetry
tasks by executing queries solely in the data plane at line
rate, but the queries that they can :uppon are limited by the
capabilities and memory in the data
Rather tha aceeptng this spparent iradeoff between e
we observe that

NY, USA, 15 pages. https//doi org/10.11
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model; they both apply an ordered set of transformations
over structured data in a pipeline. This commonality sug-

gests that an opp to combine the strengths of
both a single telemetry system that supports
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. while till operating at line rate for high
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and rates,

“To explore this idea, we develop Sonata (Streaming Net-
work Traffic Analysis). a query-driven network telemetry
system. Figure 1 shows the design of Sonatas it provides
a declarative interface that can express queries for a wide

with a few ¢
1. INT
Packet loss

keynote (7]
for one yet

NetFlow has been a widely used monioring tool with
a variety of applications. NetFlow maintains an active
working set of flows in a hash table that supports fi
insertion, collision resolution, and flow removing. This
is hard to implement in merchant silicon at data cen-
ter switches, which has limited per-packet processing
time. Therefore, many NetFlow implementations and
other monitoring solutions have to sample or select a
subset of packets to monitor. In this paper, we observe
the need to monitor all the flows without sampling in
short time scales. Thus, we design FlowRadar, a new
way to maintain lows and their counters that scales to a
large number of flows with small memory and bandwidth
overhead. The key idea of FlowRadar is to encode per-
flow counters with a small memory and constant inser-
tion time at switches, and then to leverage the computi
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval-
uation shows that the memory usage of FlowRadar is
close to traditional NetFlow with perfect hashing. With
FlowRadar, operators can get better views into their net-
works as demonstrated by two new monitoring applica-
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] is a widely used monitoring tool for over 20
years, which records me flows (. sour IR desine.
tion IP, source port, d n port, and protocol) and
their properties (¢.2., pwkel counters, and the flow start-
ing and finish times). When a flow finshes after the in-
active timeout, NetFlow exports the corresponding flow
records to a remote collector. NetFlow has been used for
a variety of monitoring applications such as accounting

d

time and space complexity. We need to handle collisions
during flow insertion and remove old flows to make room
n the lim-

ited per-packe: icon.

T e s challenge. today’s NetFlow is imple-
‘mented in two ways: (1) Using complex custom silicon
that is only available at high-end routers, which is too
expensive for data centers; (2) Using software to count
sampled packets from hardware, which takes too much
CPU resources at switches. Because of the lack of us-
able NetFlow in data centers, operators have to mirror
packets based on sampling or matching rules and ana-
Iyze these packets in a remote collector [26, 40. 44, 34].
Itis impossible to mirror all the packets because it takes
to0 much bandwidth to mirror the traffic, and too many
storage and computing resources at the remote collector
o analyze every packet. (Section 2)

However, in data centers, there is an increasing need
o have visibility of the counters for al the flows all the
time. We need to cover all the flows to capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
enined traffic analysis (... anomaly detection). W
need o cover these flows all the time to identify transient
Tosses, bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps
counters for all the flows with low memory overhead
and exports the flow counters in short time scales (c.g.
10 ms). The key design of FlowRadar i to identify the
best division of labor between cheap switches with lim-
ited per-packet processing time and the remote collector
with plenty of computing resources. We introduce en-
coded flowseis that only require simple constant-time in-
structions for each packet and thus are easy to implement

network usage, capacity planning. an
attack detection.
Despite its wide applications. the key problem to im-

these flowsets and perform network-wide analysis across
time and switches all at the remote collector. We make
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wide visibility, we present a distributed heavy-hitter detec-
tion scheme for networks modeled as one-big switch. We use
adaptive thresholds to perform efficient threshold monitor-
ing directly in the data plane. We implement our system us-
ing the P4 language, and evaluate it using real-world packet
traces. We demonstrate that our solution can accurately de-
tect network-wide heavy hitters with up to 70% savings in
communication overhead compared to an existing approach
with a provable upper bound.

1 INTRODUCTION

Network operators often need to identify outliers in network
traffc, to detect attacks or diagnose performance problems.
A common way to detect unusual traffic i to perform “heavy
hitter” detection that identifis the top-k flows (or flows ex-
ceeding a pre-determined threshold), according to some met-
ic. For example, network operators often track destinations
g traffc from a large number of distinct sources with
mgh prcclxmn in order to detect and mitigate DDoS attacks
incast (4] in real time. In traditional networks, this
hzavy hitter detection relies on analyzing packet samples
o flow log [, 6. l'mgramnubln- switches open up new
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solutions use approximate data structures, that bound mem-
ory and processing overhead in exchange for some loss in
accuracy, in order to deal with the limited resourcesavailable
on the switches.

While prior work has focused on heavy-hitter detection
at a single switch, network operators often need to track the
network-wide heavy hitters. For example, port scanners [15]
and superspreaders [27] could go undetected f the traffic is
monitored only at one location. Detecting the heavy hitters
separatlyat cach it and then combiningth el i
not sufficient. Large flows can easily fall “under the radar”
at multiple Tocation bt sl ave sirabe totalvolume Ap-
plying a lower detection threshold at each switch reduces
the chance of missing large flows, at the expense of higher

bt ” and identifying
large nomd.muy.n e data plan (17,16, 21,27]. These
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defined However,
sampling can result i substantally reduced aceuracy on
smal time scales [21], even when traffic volumes are high. In
Figure 1, we show the impact sampling has on accuracy while
performing heavy-hitter detection on a link between two
major ISPs (12] processing approximately 1GBps of traffic.
Even with high sampling rates, recall is quite low on short
time intervals and it quickly diminishes as sampling rates
decrease. In modern datacenter networks where switches
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Network management requires accurate estimates of met-
vics for many applications including traffic engineering (c.g..
heavy hitters). anomaly detection (c.g.. entropy of source
addresses), and security (¢.g.. DDoS detection).  Obtain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fdelity general-
purpose approaches such as sampling, or (2) high fielity
but complex algorithms customized to specific application-
level metics, delly o soaion shold be bolh generst

paable to costoes lgcitims. T pepee prescets Uni.
Mon. a framework for flow monitoring which leverages re-
e

to achieve both generality and high accuracy. UnivMon uses

ferent (and possibly unforeseen) estimation algorithms run

Network management is multi-faceted and encompasses a
range of tasks including raffic engineering [11,32], atiack
and anomaly detection [49]. and forensic analysis [46]. Each
such management task requires accurate and timely Statis-
ticson different application-level metrics of interest; .., the
flow size distribution [37], heavy hitters [10]. entropy mea-
sures [38, 501, or detecting changes in traffic patierns [44]
Ata high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
elies on generic flow monitoring. typically with some form
of packet sampling (¢.g., NetFlow [251). While generic flow
monitoring is good for coarse-grained visibilty, prior work
s ot povides o sy o ne (o
metrics [30,31,43]. These well-known ions of sam-
pling ez 0 aheratve class o echicpes based o
sketching or streaming algorithms. Here, custom

line
ot and o Srctures e designed for spocfic met.
trade

Permission to mall] in the control plane, and use the statistics from the data plane
H H personal or classroon to compute application-level metrics. We present a proof-  offs (e.g., [17,18,20,31,36,38,43]),
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sign and operate new custom sketches for each task. Fur-
th ta la c

have to be committed (a priori) o a specific set of mefrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.

eally, we want a monitoring framework that offers both
generality by delaying the hinding o specific applications
of interest but atthe same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity -ously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [45].

In this paper, we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultancously achieve
ot generality andhigh ideityaceoss  broadspetrum of
monitoring tasks | 38.511._UnivMon builds on and
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| Managing and securing networks requires collecting and  Network operators routinely perform continuous monitor. ~‘~“~'~"‘;"‘I1 on commodity ’:f"‘."."‘.i"f"""}"f“l ?\:‘l{cl\‘l\ttlul‘m‘ulrlnvlL\‘;\li“lmhlmv e
e g individua identiy these “heavy hitter” flows directly in the data plan
= | zing network traffic data in real time. Existing telen ing to track events ranging from performance impairments cotire nctdl performance it by aggregating trafic statistics acroes packets and compar
el try systemns do ot allow operatos o express the range of 1o attack. This monitorng requires continuous eal-tme oo otype Dapper by aggregating taflc sttt across packets and compor-
only queries needed to petform management or scale to large traf-  measurement and analysis—a process commonly referred folgr | Abstract plement NetFlow in hardware is how to maintain an ac- traffc. To redy o ety tmteresting traffe o & netwkowide &
e volumes ad e, We presens Somate an expessve and 1o st nepwork tlemeny [55), Exing eemely systens cun e workingse of flows using a o sctre. it ow P ant o dentify intresing eafic on  etwork-wile bsis .
cdl scalable teemetry system that coordinaies joint collection  collect and analy e messurement dta n realtme, bt they memory NetFlow has been a widely used monitoring tool with i i 8 I I R A T o brdgethe aphetween e ratemonioringand networ .
e | and analysis of network traffic. Sonata provides a declarative  cither support a limited set of telemetry tasks [34, 40], or " | @ variety of applications. NetFlow maintains an active ycing flow insertion and remove old flows to make room wide vy, we present adstruted ey it deec Sumpling Rate (11
interface to express queries for a wide range of common  they incur substantial processing and storage costs as traffic with a few] working set of flows in a hash table that supports flow o owy anes These tasks are challenging given the lim- on scheme fornetworks modeled as one-ig swilh. We use
| telemetry tasks; o enable real-time execution, Sonata parti-  rates and queries increase [7, 10, 58] insertion. collision resolution, and flow removing. This e per-packet processing time at merchant silicon. Pertormanedl] adaptive thresholds to perform effcient threshold monitor-
= tions each query across the stream processor and the data Existing telemetry systems typically trade off scalabil is hard to implement in merchant silicon at data cen-p i S g NaFow s imple- erformancy ing directly in the data plane. We implement our system s~ Figure 1: This graph shoves the rcal fordetecting heavy-hiters
Nety plane, running as much ofthe query asit can on the network ity for expressiveness, or vice versa. Telemetry systems 1. INT ter switches. which has limited per-packet processing o (SS A E PR LS SR €CS Concepl ingthe P4 lagusge, and valte it usingreal-workd packe  tueen o majr 9 1] et monitorg s v
d : rate. . . ¥ . - time. Therefore, many NetFlow implementations and % potorddl traces. We demonstrate that our solution can accurately de-  under high sampling rate, recall quickly diminishes and worsens as
B | switch, at line rate. To optimize the use of limited switch  that rely on stream processors alone are expressive but not Packet loss N B ) - that is only available at high-end routers, which is too work performé tect network-wide heavy hitters with up to 70% savings in _ the monitorng interval decreases.
| memory, Sonata dynamically refines each query to ensure  scalable. For example, systems such as NetQRE (58] and happen fof other monitoing soluions have to sample of St 4 cypengivefor data centes: (2) Using software o count port protocolg commanication overhead compared to an existing approach .
= that available resources focus only on traffic that stisies the  OpenSOC [40] can support a wide mange of queries using Keynote [7] subset ofpackets (o monior. I his paper, we S v from bandware, which ok to0 much 3 communication overhead compared o & approa e
e query. Our evaluation shows that Sonata can support a wide  stream processors running on general-purpose CPUs, but for one yez ‘h‘ o - ‘"I‘"" "‘“;L - :’“‘ ‘\";I“""K’f“"p "“\ ™ CPU resources at switches. Because of the lack of us- INTRO R ory and processing overhead in exchange for some loss
Mond range of telemetry tasks while reducing the workload for the  they incur substantial bandwidth and processing costs to do losses, 4 n short time scales. Thus, we design FlowRadar, 4 new 0 Neiplow in data centers, operators have to mirror ublic cloud . to de: . ¥ .
b ream processor by as much as seven orders of magnitude 50 Large networks can require perfotming as many 55 100 i way 0 malntin flows and their counters hat sales toa e (1O 7 2 i e, opersiens have to Fubiic gy 1 INTRODUCTION sy inadetoda wihthe lmited resurees ol
" much . ’ n _ ackets based on ing rules and ana ication perfy on the switches
bps compared to existing telemetry systems ‘nillion aperations per second for ates of 1 Thps and packet immediate number of fows with small memory and bandwidth okt i o et clloton (26, 40, 44, 34 Blicwion 2 Network operators often need to dentify outliers in network
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s of 1 KB, Scaling to these rates using modern stream pro.
‘..w,,\.\pmmum.|\, costly due to the lower (2-3 orders of
magnitude) processing capacity per core [37, 39, 41, 59). On
the other hand, telemetry systems that r

on programmable
switches alone can scale to high traffic rates, but they give
up expressiveness o achieve this scalability. For example,
Marple [34] and OpenSketch [36], can perform telemetry
tasks by executing queries solely in the data plane at
vate, but the queris that they ca suppert are limited by the
capabilities and memory in the data plane.

Rather than accepting this apparent tradeoff between ex:
pressiveness and scalability, we observe that stream proces.
hare

model; they both apply an ordered set of transformations
over structured data in a pipeline. This commonality sug:

significantl
especially v

Pamision o

Dot o/

larg
overhead. The key idea of FlowRadar is to encode per-
flow counters with & small memory and constant inser-
tiontime at switches, and then to leverage the computing
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval
uation shows that the memory usage of FlowRadar is
close to adiical NetFow with pfec inkin. Witk

operat  better views into their net-

w Urk\ e demoniraed by two new monitoring applica-
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] s a widely used monitoring tool for over 20
years, which records the flows (e.g.. source IP, destina-

lyze the:
It is impossible to mirror all the packets because it takes
too much bandwidth to miror the traffic, and too many
storage and computing resources at the remote collector
to analyze every packet. (Section

However, in data centers, there is an increasing need
o have visibility of the counters for all the flows all the
time. We need (o cover all the flows o capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
anomaly detection). We

y transient
. bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps
counters for all the flows with low memory overhead

ost) and goo¢
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traffic, to detect attacks or di
A common way to detect unusual traffic is to perform “heavy
hitter” detection that identifies the top-k flows (or flows ex-

receiving traffic from a large number of distinct sources with
high- precision n order to detect and mil
TCP

heavy-hiter detection
or flow logs [5, 6]. l'rogmmnmlvlc switches open up new
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ermined threshold), according to some met-
ple, network operators often track destinations

ast [4] in real time. In traditional networks, this

the data plane [17, 18, 24, 27). The

nose performance problems.

network-

and supes

te DDoS attacks

on analyzing packet samples

s and identifying
dinator.

ade or ditributedfor rot o commpereal advantogsand tat opes e

While prior work has focused on heavy-hitter detection
ata single switch, network operators often need to track the
de heavy hitters. For example, port scanners [15]
preaders [27) could go undetected if the traffc is
monitored only at one location. Detecting the heavy hitters
separately at each switch and then combining the resuls is
not sufficient. Large flows can e

ly fall “under the radar”

at multiple locations but still have sizable total volume. Ap-
plying a lower detection threshold at each switch reduces
Jarge flows, at the expense of hi
communication overhead to report counts to a central coor-

Additionally, networks that forward high traffic volumes
often resort to sampling 1/x packets, where x is operator
defined based on the needs of the sp

twork. However,

o - and expors the flow counters in short time scales (c.g. e and e ol oo ot s g ot o sampling can result in substantially reduced accuracy or
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To explore this idea, we develop Sonata (Streaming Net
work Traffic Analysis), a query-driven network telemetry
system. Figure 1 shows the design of Sonata: it provides
a declarative interface that can express querics for a wide

active timeout, NetFlow exports the corresponding flow
records (o a remote collector. NetFlow has been used for
a variety of monitoring applications such as accounting
network usage, capacity planning, and

i ety of Computing resources. We mmoduce o
coded flowsess v\m only require simple constant-time in-
acket and thus are easy to implement

attack detection. )
Despite its wide applications. the key problem 1o im-

We then decode
hes Mowsets and perform network-wde analyis aross
time and switches all at the remote collector. We make
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ase. In modern datacenter networks where switches
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ABSTRACT

Network management requires accurate estimates of met-
rics for many applications including traffc engineering (.
heavy hitters), anomaly detection
addresses), and security (g
ing accurate estimates given router CPU and memory con-
g problem. Existing approaches fall
in one of two undesirable extremes: (1) low fidelity general-
purpose approaches such as sampling, or (2) high fidel
but complex ustomized to specific appli
level metrics. il a sohiion should be both
(ic..supports many applications,
parable to custom algorithms.
Mon, a framework for flow monitoring which Ley
cent theoretical advances and demonstrates that it is pumhm
to achieve both

straints s a challe

provide accuracy com-

ape presnts Univ-

ferent (and povably unforeseen) stmaton aigorth

in the control plane, and use the statistics from the data plane
to compute application-level metrics. We present a proof-
of-concept implementation of UnivMon using P4 and de-
velop simple coordination techniques to provide a “one-bi
switch” abstraction for network-wide monitoring. We eval
uate the effectiveness of UnivMon using a range of trace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
lutions across a range of monitoring tasks.
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1 Introduction

Network manageme:

faceted and encompasses
range of ks meluding i engincering (11,32}, atack
and anomaly detection [49], and forensic analysis [46]. Each
such management task requires accurate and timely stais-
tics on different application-level metrics of interest; .£. the
flow size distribution (37, heavy hiters [10], entropy mea:
sures [38,50], or detecting changes in traffic patterns [44
Ata high level, there are two classes of techniques (o esti-

mate these metrics of interest. The first class of approaches
relies on generic flow monitoring. typically with some form
of packet sampling (e.¢.. NetFlow [25]). While generic flow
eined vsbily, pror work

et 130, 31,451, These well Known limtaions of sa-
pling motivated an alternative class of techniques based on
sketching or sireaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
rics of interest that can yield provable resource-accuracy trade
offs . [17,1820.3136.3.43).
While the body of work in data s
has made signi
tory of crafting spet alg
hc long term. &S the urber of monitoring tasks grows, his
tails significant investment in al n and hard-
are support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide libaries to
reduce the implementation effort and offer efficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resources
have to be commitied (a priori) to a specific set of mefrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked

Ideally, we want a monitoring framework that offers both
generality by delaying the binding to specific applications
ofnterest bt atthesam ime provides the required fiel
for estimating these metrics. Achiey rality and high
fdelity imuancousy has becn a elosive ol both i the.
ory W\ (Question 24) as well as in practice [45

n this paper, we present the UnivMon (short for Univer-
<l Monttoring) framework that can simuliincously achieve
ot generality and highfidly cros  boad spectrum of
monitoring tasks [31. 36, 38.51]. UnivMon builds on and




Current monitoring methods are inadequate

= Not fast enough
" |nvolve CPU and control planes

= Network state changes rapidly

= Do not provide end-to-end state

= Difficult to correlate per-element state with the actual
path of a flow

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



INT : In-band Network Telemetry

* Mechanism for collecting network state in the dataplane

= As close torealtime as possible
= At current and future line rates

= With a framework that can adapt over time

= Examples of network state
= Switch ID, Ingress Port ID, Egress Port ID
= Egress Link Utilization
= Hop Latency
= Egress Queue Occupancy
= Egress Queue Congestion Status

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



INT Header Format

< 4 Bytes B
Ver Flags | Instruction Count | Max Hop Count | Total Hop Count Metadata
Instruction Bitmap Reserved Header
0 Most Recent INT Metadata i
0 INT Metadata

_Metadata
1 First INT Metadata

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



INT using P4

= P4 enables flexible packet parsing and
modification for INT

= P4 allows INT to adapt to

" Any Encapsulation format
= Any State requiredto be collected

= Any feature, protocol — current and future

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



INT : P4 Code Snippet

Exact-match table int_inst {
S reads {
Table Definition int_header.instruction_mask : exact;
}
actions {

int_set_header _i0;
int_set_header _i1;
int_set_header_i2;
int_set_header_i3;

Action action int_set_header _i0() {
Definitions }
action int_set_header_il1() {
int_set_header_3();
}
action int_set_header_i2() {
int_set_header_2();
}
action int_set_header _i3() {
int_set_header_3();
int_set_header_2();
}

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



HULA: INT + Flowlet routing

1. Periodic INT probes

= disseminate path utilization to switches

2. Flowlet detection and path selection
"= happens at all switches
= hop-by-hop adaptive routing

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



INT probes traverse multiple paths

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



Probes carry path utilization

ToR ID=10
Max_util =80%

ToR ID =10

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



Probes update switch state

ToR ID=10
Max_util =50%

Path Util table

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015



Summary

" INT provides real-time network state directly in the
dataplane
= Scales to arbitrarily large networks
= Scales to current and future link speeds
= Can adapt to any network, any encap, any application

* Knowledge of real-time network state opens up new
possibilities
* Enhanced monitoringand troubleshooting
= Network-state aware routing

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015
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ABSTRACT

Managing and securing networks requires collecting and
analyzing network traffic data in real time. Existing teleme-
try systems do not allow operators to express the range of
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Sonata: Query-Driven Streaming Network Telemetry
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1 INTRODUCTION

Network operators routinely perform continuous monitor-
ing to track events ranging from performance impairments
to attacks. This monitoring requires continuous, real-time

queries needed large traf-
fic volumes and rates. We present Sonata, an expressive and
scalable telemetry system that coordinates joint collection
and analysis of network traffic. Sonata provides a declarative
interfce to expres qeies for  wide range of common
ta parti-

and analysis—a process commonly referred
to as network telemetry [55). Existing telemetry systems can
collect and analyze measurement data in real time, but they
either support a limited set of telemetry tasks [34, 40, or

rates and

telemetry tasks;
tions each query across the stream processor and the data
I

they incur substantial processing nd storagecost s i
58].

Existing telemetry s,m.m Iyplcally irade of sclabi-

plane, g of the query as it
switch, at line rate. To optimize the use of limited switch

Sonata dynamically refines each query to ensure
that available resources focus only on traffic that satisfies the
query. Our evaluation shows that Sonata can support a wide
range of telemetry tasks while reducing the workload for the
stream processor by as much as seven orders of magnitude
compared to existing telemetry systems

ity for or vice versa. Telemetry systems
it rly on stecam processors lone e expressive bt not
scalable. For example, systems such as NetQRE (58] and
OpenSOC [40] can support a wide range of queries using
stream processors running on general-purpose CPUs, but
they incur substantial bandwidth and processing costs to do
so. Large networks can require performing as many as 100
lion operations per second for rates of 1 Tbps and packet
z€s of 1 KB. Scaling to these rates using modern stream pro-
cessors is prohibitively costly due to the lower (2-3 orders of
magnitude) processing capacity per core [37, 39, 41, 59]. On

switches alone can scale to high traffic rates, but they give
to achieve this scalabilty. For example,
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and rates,

“To explore this idea, we develop Sonata (Streaming Net-
work Traffic Analysis). a query-driven network telemetry
system. Figure 1 shows the design of Sonatas it provides
a declarative interface that can express queries for a wide
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FlowRadar: A Better NetFlow for Data Centers

Yuliang Li*  Rui Miao®  Changhoon Kim'  Minlan Yu*

“University

Abstract

NetFlow has been a widely used monioring tool with
a variety of applications. NetFlow maintains an active
working set of flows in a hash table that supports fi
insertion, collision resolution, and flow removing. This
is hard to implement in merchant silicon at data cen-
ter switches, which has limited per-packet processing
time. Therefore, many NetFlow implementations and
other monitoring solutions have to sample or select a
subset of ackets (o monir, In i paper ve obwnc
ed to monitor all the
Short time sl Thus, we desin FlowRadat, . new
way to maintain lows and their counters that scales to a
large number of flows with small memory and bandwidth
overhead. The key idea of FlowRadar is to encode per-
flow counters with a small memory and constant inser-
tion time at switches, and then to leverage the computing
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval-
uation shows that the memory usage of FlowRadar is
close to traditional NetFlow with perfect hashing. With
FlowRadar, operators can get better views into their net-
works as demonstrated by two new monitoring applica-
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] is a widely used monitoring tool for over 20
years, which records the flows (e.g., source IP. destina-

of Southern California ¥ Barefoot Networks

plement NetFlow in hardware i how to maintain an ac-
tive working set of flows using a data structure with

time and space complexity. We need to handle collisions
during flow insertion and remove old flows to make room
for new ones. These tasks are challenging given the lim-
ited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is imple-
‘mented in two ways: (1) Using complex custom silicon
that is only available at high-end routers, which is too
expensive for data centers; (2) Using software to count
sampled packets from hardware, which takes too much
CPU resources at switches. Because of the lack of us-
able NetFlow in data centers, operators have to mirror
packets based on sampling or matching rules and ana-
Iyze these packets in a remote collector [26, 40. 44, 34].
Itis impossible to mirror all the packets because it takes
to0 much bandwidth to mirror the traffic, and too many
storage and computing resources at the remote collector
o analyze every packet. (Section 2)

However, in data centers, there is an increasing need
o have visibility of the counters for al the flows all the
time. We need to cover all the flows to capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
enined traffic analysis (e.g.. anomaly detection). We
need o cover these flows all the time to identify transient
Tosses, bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps
counters for all the flows with low memory overhead
and exports the flow counters in short time scales (c.g.
10 ms). The key design of FlowRadar i to identify the
best division of labor between cheap switches with lim-
ited per-packet processing time and the remote collector
with plenty of computing resources. We introduce en-
coded flowseis that only require simple constant-time
structions for each packet and thus are easy to implement

network usage, capacity planning, an
attack detection.
Despite its wide applications. the key problem to im-

these flowsets and perform network-wide analysis across
time and switches all at the remote collector. We make
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Commodity Switches

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

Princeton University

ABSTRACT

Many network monitoring ass dentiy subsesofrfic
stz ol g g o o asticue st A

|dennly these “heavy hitter” flows directly in the data plane
by aggregating traffic staistics across packets and compar-
ing against a threshold. However, network operators often
want to identify interesting traffic on a network-wide basis

wide visibility, we present a distributed heavy-hitter detec-
tion scheme for networks modeled as one-big switch. We use
adaptive thresholds to perform efficient threshold monitor-
ing directly in the data plane. We implement our system us-
ing the P4 language, and evaluate it using real-world packet
traces. We demonstrate that our solution can accurately de-
tect network-wide heavy hitters with up to 70% savings in
communication overhead compared to an existing approach
with a provable upper bound.

1 INTRODUCTION

Network operators often need to identify outliers in network
traffc, to detect attacks or diagnose performance problems.
A common way to detect unusual traffic i to perform “heavy
hitter” detection that identifis the top-k flows (or flows ex-
ceeding a pre-determined threshold), according to some met-
ic. For example, network operators often track destinations
receiving traffc from a large number of distinct sources with
mgh precson in order to detect and mitigate DDoS attacks
or T t 4] in real time. In traditional networks, this
hzavy hitter detection relies on analyzing packet samples
o flow log [, 6. l'mgramnubln- switches open up new

- nerval
-0 Inierval
-0 Inierval

]
Sumpling Rae (119

Figure 1: This gmph shows the el fordtectag ey i

e high samplag s, recalgukchdy linishes and worsees as
the monitoring interva decreases.

solutions use approximate data structures, that bound mem-
ory and processing overhead in exchange for some loss in
accuracy, in order to deal with the limited resourcesavailable
on the switches.

While prior work has focused on heav
at a single switch, network operators often need to track the
network-wide heavy hitters. For example, port scanners [15]
and superspreaders [27] could go undetected f the traffic is
monitored only at one location. Detecting the heavy hitters
separatlyat cach it and then combiningth el i
not sufficient. Large flows can easily fall “under the radar”
at multiple Tocation bt sl ave sirabe totalvolume Ap-
plying a lower detection threshold at each switch reduces
the chance of missing large flows, at the expense of higher

itter detection

bt ” and identifying
large nomd.muy.n e data plan (17,16, 21,27]. These

Permission to make digital or hard copies of al or partof this work for

d to report counts

dinator.
Additionally, networks that forward high traffic volumes
often resort to sampling 1/x packcls. where x is operator-

defined

However,

sampling can result i substantally reduced aceuracy on

it sl i scles 21, even when tafic vlumes e high.n
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itps/doLorg/ 10114573 185467.3185476

orrpublish. Figure 1, we show the impact sampling has on accuracy while
edisribute to s, requiespror pe
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performing heavy-hitter detection on a link between two
major ISPs (12] processing approximately 1GBps of traffic.
Even with high sampling rates, recall is quite low on short
time intervals and it quickly diminishes as sampling rates
decrease. In modern datacenter networks where switches
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Network management requires accurate estimates of met-
vics for many applications including traffic engineering (c.g..
heavy hitters). anomaly detection (c.g.. entropy of source
addresses). and seurity (¢.g.. DDoS detection).

in one of two undesirable extremes: (1) low fdelity general-
purpose approaches such as sampling, or (2) high fielity
but complex algorithms customized to specific application-
level metics, delly o soaion shold be bolh generst

pamhle Lo coson algcitun. This paper presens U
framework for flow monitoring which leverages re-
e

to achieve both generality and high accuracy. UnivMon uses

ferent (and possibly unforeseen) estimation algorithms run
inthe control plane, and use the statstics from the data plane
to compute application-level metics. esent a prool

of-c ot implementation of llannn using P4 and de-

Network management is multi-faceted and encompasses a
range of tasks including raffic engineering [11,32], atiack
and anomaly detection [49]. and forensic analysis [46]. Each
such management task requires accurate and timely stats
ticson different application-level metrics of interest; .., the
flow size distribution [37], heavy hitters [10]. entropy mea-
01, or detecting changes in traffic patterns [44].
Ata high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
elies on generic flow monitoring. typically with some form
of packet sampling (¢.g., NetFlow [251). While generic flow
monitoring is good for coarse-grained visibilty, prior work
as shown that it provides low accuracy for more fine-grained
metrics [30.31,43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
sketching or sireaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
trade

offs (e.., [17,18.20,31,36,38,43))
‘While the body of work in data streaming and sketching

provide a “one-big-
Switch” astcacion for network-wide monitoing. We eval-
uate the effectiveness of UnivMon using a range of trace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
Iutions across a range of monitoring tasks.

CCS Concepts

Networks —» Network monitoring; Network measure-

Keywords
Flow Monitoring. Sketching, Streaming Algorithms

s e gl wibout o o it ol i ke c

e o e o el sy md it copes b s i
e it p

by st ACM ks be ol i i i s et

it Tocopyaherws, o repubish 1o post o serves o o e

Pemiemon o

SIGCOMM *16, August 22-26, 2016, Florianopolis, Brazil
5 2016 ACM ISBN 978- 14503 4193 /1605, ..S15.00
. doi ors/10.1 14SPOURT 2934906

has contributions, we argue that this trajec-
Igorithms is untenable in
As the number of monitoring tasks grows, ths
entails significant investment in algorithm d

ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide libraries to
reduce the implementation effort and offer efficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
th ta la c

have to be committed (a priori) o a specific set of mefrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.

eally, we want a monitoring framework that offers both
generality by delaying the hinding o specific applications
of interest but atthe same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity -ously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [45].

In this paper, we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultancously achieve
ot generality andhigh ideityaceoss  broadspetrum of
monitoring tasks | 38.511._UnivMon builds on and
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Sonata: Query-Driven Streaming Network Telemetry

MARPLE

b | Arpit Gupta Rob Harrison Marco Canini
©arie Princeton University Princeton University KAUST |
o Nick Feamster Jennifer Rexford ‘Walter Willinger
- Princeton University Princeton University NIKSUN Inc.
| ABSTRACT 1 INTRODUCTION
| Nanaging and securing networks equirs collctingand - Network pertorsrutinely peform continous monitor
sped anayzing network raflcdata el e, Eising teleme: - ing otk cens rangln from perfonanee ngairoents
hatd ey avsems do ot sllow aperaors 10 angeol 1o altacs. Thi moniorin requies continuous e time
only queies needed 1o peform management o sal 0 age - rement and analysi s ¢ elrred
e volumes and rate. We present Sonata. an expressive and o s network felemeiry (55, Exsting elemetry
ccl sclabl telemtry system hat coordinates jont collecton  collct and analy e measurcment daga i realtme, but hey
.~ and analysis of network traffic. Sonata provides a declarative either support a limited set of telemetry tasks [34, 40], or
interface to express queries for a wide range of common  they incur substantial processing and storage costs as traffc
| telemetry tasks; to enable real-time execution, Sonata parti-  rates and queries increase [7, 10, 58]
tions each query across the stream processor and the data Existing elemety systens typically rade of salbil
Ny plane, running as much of the query as it can on the network ity for express vice versa. Telemetry systems
i switch, at line rate. To optimize the use of limited switch  that rely on stream processors alone are expressive but not
. memory, Sonata dynamically refines each query to ensure  scalable. For example, systems such as NetQRE [58] and
b | that available resources focus only on traffic that satisfies the OpenSOC [40] can support a wide range of queries using
Kim query. Our evaluation shows that Sonata can support awide  stream processors running on general-purpose CPUs, but
Moai range of telemery tasks while reducing the workloadfor the  they incur substantial bandwidth and processing costs to do
212} stream processor by as much s seven orders of magnitude  so. Large networks can require performing as many as 100
bups{ compared to existing telemetry systems million operations per second for rates of 1 Thps and packet
s of 1KB. Scaling to these rates using modern stream pro.
CCS CONCEPTS cessors is prohibitively costly due to the lower (2-3 orders of
poe | + Networks — Network monitoring; magnitude) processing capacity per core [37, 39,41, 59). On
e} that rely
o KEYWORDS ches alone can scale to high traffic rates, but they give
e analytics switches, s to achieve this scalabilty. For example,
b | \x.«m [34] and OpenSketch [56], can perform telemetry
e} » b
siael ACM Reference Format tasks by exceutingqueries sy i the data plane at i
G e bl o ity e
ingNetwork Teemery Tn SIGCONN “"“"""“Eﬂfﬁfﬁ?.:: ?Zfﬁ;ﬁ';ff.f:f wadeoffbetween ex

Both papers enable operators to express monitoring queries

onference, August 20-25, 2015, Budapest, Hungary. ACM, New York
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result =

"o explore this deawe develop Sonata (Streami
work Traffic Analysis), a query-driven .mmyk clemetry
system. Figure 1 shows the design of Sonata: it provides
a declarative interface that can express q\.um for a wide

filter(pktstream, qid

Q and switch == S
and t_out - t_in > 1ms)

returns a stream of packets experiencing high queuing latencies

A compiler then compiles these queries to: switch programs +
control code
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FlowRadar: A Better NetFlow for Data Centers

Yuliang Li*  Rui Miao®  Changhoon Kim'
*University of Southern California

Abstract

NetFlow has been a widely used monitoring tool with
a variety of applications. NetFlow maintains an active
working set of flows in a hash table that supports flow
insertion, collision resolution, and flow removing. This
is hard to implement in merchant silicon at data cen-
ter switches, which has limited per-packet processing
time. Therefore, many NetFlow implementations and
other monitoring solutions have to sample or select a
subset of packets to monitor. In this paper, we observe
the need to monitor all the flows without samplis
short time scales. Thus, we design FlowRadar, a new
way to maintain lows and their counters that scales to a
large number of flows with small memory and bandwidth
overhead. The key idea of FlowRadar is to encode per-
flow counters with a small memory and constant inser-
tion time at switches, and then to leverage the computi
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval

uation shows that the memory usage of FlowRadar is
close to traditional NetFlow with perfect hashing. With
FlowRadar, operators can get better views into their net-
works as demonstrated by two new monitoring applica
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] s a widely used monitoring tool for over 20
years, which records the flows (e.g.. source IP, destina-
tion IP, source port, destination port, and protocol) and
their properties (e.¢., packet counters, and the flow start-
ing and finish times). When a flow finishes after the in-
active timeout, NetFlow exports the corresponding flow
records t0 a remote collector. NetFlow has been used for

a variety of monitoring applications such as accounting
network usage, capacity planning. and

Minlan Yu*
* Barefoot Networks

plement NetFlow in hardware i how to maintain an ac-
tive working set of flows using a data structure with low
time and space complexity. We need to handle collisions
during flow insertion and remove old flows to make room
for new ones. These tasks are challenging given the lim-
ited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is imple-
‘mented in two ways: (1) Using complex custom silicon

sampled packets from hardware, which takes too much
CPU resources at switches. Because of the lack of us-

able NetFlow in data centers, operators have to mirror
packets based on sampling or matching rules and ana-
Iyze these packets in a remote collector [26, 40, 44, 34]
It is impossible to mirror all the packets because it takes
too much bandwidth to miror the traffic. and too many
storage and computing resources at the remote collector
¢ every packet. (Section 2)

However, in data centers, there is an increasing need
o have visibility of the counters for all the flows all the
time. We need to cover all the flows to capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
enined traffic analysis (... anomaly detection). We
n e flows allthe time to identify transient
. bursts, and attacks in a timely fashion. (Section 3)

the:

and exports the flow counters in short time scales (e.g.
10 ms). The key design of FlowRadar is to identify the
best division of labor between cheap switches with lim-
ited per-packet processing time and the remote collector
with plenty of computing resources. We introduce en-

coded flowsets that only require simple constan-time in-
structions for cach packet and thus are easy to implement
with merchant We then decode

attack detection,
Despit its wide applications. the key problem to im-

these flowsets and perform network-wide analysis across
time and switches all at the remote collector. We make

LossRadar

—— FlowRadar

Develop techniques and tools to monitor all flows by

relying on in-switch data structures (Bloom Filters) an

decoding them at the controller-level
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Network-Wide Heavy Hitter Detection with
Commodity Switches

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

Princeton University

ABSTRACT

Many network monitoring tasks identify subsets of traffic
that stand out, e, top-k flows for a particular statistic. A

Protocol Independs

tch
identify these “heavy hitter” flows directly in the data plane
by aggregating traffic staistics across packets and compar-

against a threshold. However, network operators often

want to identify interesting traffic on a nefwork-wide bas
d network

nta distributed heavy-hitter detec-
tion scheme for networks modeled as one-big switch. We use
adaptive thresholds to perform efficient threshold monitor-
ng directly in the data plane. We implement our system us-
ing the P4 language, and evaluate it using real-world packet
traces. We demonstrate that our solution can accurately de-
tect network-wide heavy hitters with up to 7
communication overhead compared to an existing approach
with a provable upper bound

wide visibilty, we pre

1 INTRODUCTION

Network operators often need to identify outliers in network
traffc, to detect attacks or diagnose performance problems.
A common way to detect unusual traf I
hitter” detection that identifi

heavy
the top-k flows (or flows e
ceeding a pre-determined threshold), according to some m
ic. For example, network operators often track destinations

g traffic from a large number of distinct sources with
high-precision in order to detect and mitigate DDoS attacks
or TCP incast [4] in real time. In traditional networks, this
y-hitter detection relies on analyzing packet samples
or flow logs [5, 6]. Programmable switches open up new
pos for aggregating traffic statistics and identifying
large flows directly in the data plane [17, 18, 24, 27). These
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Develop P4-based detection mechanisms to

diagnose TCP performance issue (e.g. small receiver buffers)
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Figure 1: This graph shows the recallfor detecting heavy-hitters
betsseen two major ISPs 12] with different monitoring intervals. Even
under high sampling rates, recall quickly diminishes and worsens as
the monitoring interval decreases

solutions use approximate data structures, that bound mem-
ory and processing overhead in exchange for some loss in
accuracy, in order to deal with the limited resourcesavailable

While prior work has focused on heavy-hitter detection

gle switch, network operators often need to track the
de heavy hitters. For example, port scanners [15]
and superspreaders [27] could go undetected f the traffic is
monitored only at one location. Detecting the heavy hi
separately at each switch and then combining the results is
not sufficient. Large flows can easily fall “under the radar”
at multiple locations but still ha le total volume. Ap
plying a lower detection threshold at each switch reduces
the chance of missing large flows, at the expense of higher
communication overhead to report counts to a central coor-

dar’

Additionally, networks that forward high traffic volumes
often resort to sampling 1/x packets, where x is operator-
defined based on the needs of the specific network. However,
sampling can result in substantially reduced accuracy on
smal time scales [21], even when traffic volumes are high. In
igure 1, we show the impact sampling has on accuracy while
performing heavy-hitter detection on a link between two
major ISPs (12] processing approximately 1 GBps of traffic.
Even with high sampling rates, recall is quite low on short
tim

intervals and it quickly diminishes as sampling rates
decrease. In modern datacenter networks where switches

heavy-hitter (e.g. port scanners, superspreader, DDoS)
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One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon
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ABSTRACT

Network management requires accurate estimates of met-
vics for many applications including traffic engineering (c.g..
heavy hitters). anomaly detection (c.g.. entropy of source
addresses). and security (e.¢.. DDoS detection).  Obiain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fdelity general-
purpose approaches such as sampling, or (2) high fielity
but complex algorithms customized to specific application-
level metrics. Ideally, a solution should be both general
i.c.. supports many applications) and provide accuracy com-
parable to custom algorithms. ~This paper presents Univ-
Mon, a framework for flow monitoring which
cent theoretical advances and demonstrates that it is possible
to achieve both generality and high accuracy. UnivMon uses
ana agnostic data plane - dif
ferent (and possibly unforeseen) estimation algorithms run
inthe control plane, and use the statstics from the data plane
to compute application-level Ve present a proof-

uate the effectiveness of UnivMon using a range of irace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
lutions across a range of monitoring tasks,
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1 Introduction

Network management is multi-faceted and encompasses a
range of tasks including raffic engineering [11,32], atiack
and anomaly detection [49]. and forensic analysis [46]. Each
‘management task requires accurate and timely stats-
ticson different application-level metrics of interest; .., the
flow size distribution [37], heavy hitters [10]. entropy mea:
sures [38, 501, or detecting changes in traffic patierns [44]
Ata high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
elies on generic flow monitoring. typically with some form
of packet sampling (c.g., NetFlow [251). While generic flow
monitoring is good for coarse-grained visibilty, prior work
has shown that it provides low accuracy for more fine-grained
metrics [30.31,43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
sketching or sireaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
ricsof interest that can yield provable resource-accuracy trade
offs (e.g. [17.18,20,31,36.38,43]).
‘While the body of work in data streaming and sketching
has made significant contributions, we argue that this trajec-
y of crafting special-purpose algorithms is untenable in
thelong term. As the number of monitoring tasks grows. this
entails significant investment in algorithm and har
ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide libraries to
reduce the implementation effort and offer efficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resour
have to be commitied (a priori) to a specific st of mefrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.
ly. we want a monitoring framework that offers both
generaliry by delaying the binding to specific applications
of interest but at the same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity simultaneously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [45]
In this paper, we present the UnivMon (short for Univer-
) framework that can simultancously achieve
both generality and high fidelity across a broad spectrum of
monitoring tasks [31.36.38. 511, UnivMon builds on and

s

"




Data plane Performance
programmability Monitoring

Applications offloading

Platforms Data plane
Correctness programmability

Management



[SOSR'15]

[HotNets'1 7]

[SIGCOMM'1 7]

) netpaxos.sosr15.pdf (page 1 of 7) » daiet.hotnets17.pdf (page 1 of 7) eone ) sigcomm17-silkroad.pdf (page 1 of 14)
ala Z Jalola ala Z o) ol o alala 7 )& ® J[aser
In-Network Computation is a Dumb Idea
NetPaxos: Consensus at Network Speed i . . .
P Whose Time Has Come SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Amedeo Sapiot, Ibrahim Abdelaziz, Abdulla Aldilaijan, Cheap Using Switching ASICs
Huynh Tu Dang”  Daniele Sciascia® Marco Canini, Panos Kalnis o . ,
Marco Canini’ ~ Fernando Pedone”  Robert Soul¢” Rui Miao Hongyi Zeng Changhoon Kim
. N X . L | . . . University of Southern California Facebook Barefoot Networks
Universita della Svizzera italiana ' Université catholique de Louvain ABSTRACT Programmable networks create the opportunity for in-
Programmable data plane hardware creates new opportuni-  hetwork computation, i.c., offloading a set of compute opera- Jeongkeun Lee Minlan Yu
ties for infusing intelligence into the network. This raises a tions from end hosts into network devices such as switches Barefoot Networks Yale University
fundamental question: what kinds of computation should be ~ and smart NICs. In-network computation can offer substan-
. X . delegated to the network? tial performance benefits, as it is for example the case with ABSTRACT ACM Reference format: i
ABSTRACT grammability”, allowing ordinary programs to manage the consensus protocols [9, 10] and in-network caches [20]. Al In this paper, we show that up to hundreds of software  Rui Miao, Hongyi Zeng, Changhoon Kim, Joongkeun Lee, and Min-

‘This paper explores the possibility of implementing the widely
deployed Paxos consensus protocol in network devices. We
present two different approaches: (i) a detailed design de-

scription for implementing the full Paxos logic in SDN switches,

which identifies a sufficient set of required OpenFlow exten-

sions; and (i) an altemative, optimistic protocol which can
be implemented without changes to the OpenFlow API, but
relies on assumptions about how the network orders mes-
sages. Although neither of these protocols can be fully im-
plemented without changes to the underlying switch firmware,
we argue that such changes are feasible in existing hardware.
Moreover, we present an evaluation that suggests that mov-
ing Paxos logic into the network would yield significant per-
formance benefits for distributed applications.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
C.4[Performance of Systems]: Reliability, availability, and
P P—
I:

Keywords
Software-defined networking, Paxos, NetPaxos

1. INTRODUCTION

Software-defined (SDN) is ing the
way networks are configured and run. In contrast to tradi-
tional networks, in which forwarding devices have propri-
etary control interfaces, SDNs generalize network devices
using a set of protocols defined by open standards, including
most prominently the OpenFlow [24] protocol. This move
towards standardization has led to increased “network pro-
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network through direct access to network devices.

Several recent projects have used SDN platforms to demon-
strate that applications can benefit from improved network
support. While these projects are lmpon'.\nl first steps, they
have largely focused on one clz pplica . Hadoop

5,21, 36]), .md on improving perfor
2 route selection [15,
36), traffic prioritization [12, 36], or traffic aggregation [21]).
None of this work has fundamentally considered whether ap-
plication logic could be moved into the network. In other
words: how can distributed applications and protocols uti-
lize network programmability to improve performance?

This paper focuses specifically on the Paxos consensus
protocol [19]. Paxos is an attractive use-case for several
reasons. First, it is one of the most widely deployed pro-
tocols in highly-available, distributed systems, and is a fun-
damental building block to a number of distributed appl
tions [6, 14,9]. Second, there exists extensive prior research
on optimizing Paxos [20, 22, 31, 32], which suggests that
the protocol could benefit from increased network support.
Third, moving consensus logic into network devices would
require extending the OpenFlow API with functionality that
is amenable to an efficient hardware implementation 3, 5].

Implementing Paxos in the network provides a different
point in the design space, and identifies a different set of net-
work requirements for protocol implementors. This paper
presents two different approache:

native, optimi
out changes to the OpenFlow APL but relies on &
about how the network orders messages.
Although neither of these protocols can be fully imple-
mented without changes to the underlying switch firmware,
we present evidence to show that such changes are feasible.
Moreover, we present an evaluation that suggests that mov-
ing consensus logic into the network would reduce appli-
cation ity, reduce ion message latency, and

sumptions
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increase transaction throughput.
In summary, this paper makes the following contributions:

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of lhclr computation to execute in-network.
However, tasks must be
crafied to match the Ilmluuum of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hs
ware to lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

1 INTRODUCTION

‘The advent of flexible networking hardware [6] and expres-

though traditional networks are not capable of computation,
the idea of using the network not just to move data, but also
to perform on data is

of Active Networks [30], which proposed to replace packets
with small programs called “capsules” that are executed at
each traversed switch. However, for the past two decades
the hardware capabilities were lacking. This appears to be
changing.

The recently proposed RMT architecture (6] and its upcom-
ing incarnation in the Barefoot Networks Tofino [3] switch
chip has a flexible parser and a customizable match-action
engine. To process packets at high speed, this architecture has
amulti-stage pipeline where packets flow at line rate. Each
stage has a fixed amount of time to process every packet,
allowing for lookups in memory (SRAM and TCAM), manip-
ulating packet metadata and stateful registers, and performing
boolean and arithmetic operations using ALUs. Other ven-
dors are also introducing new classes of programmable chips
with similar capabilities [7]. We believe that with this new
generation of flexible data plane hardware it is worth revis-
iting a fundamental question: as networks become capable
of ¢ ion, what kinds of ¢ should networks

sive data plane programming languages [5, 29] have produced
networks that are deeply The

of networks can now be enriched without hardware changes
while retaining the capability of processing packets at very
high rates, even above Terabits per second. Emerging pro-
‘grammable network devices are paving the way for new ser-
vices to better support data center applications [9, 18] and
improve network monitoring [13, 16, 24-26].

:Amcnk‘n Sapio is also with Politecnico di Torino.
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perform?

In this paper, we will consider this question in the scope
of data center applications because it is likely that data cen-
ters will be carly adopters of programmable networks and
many of these applications have stringent performance re-
quirements. On the one hand, in-network computations can
be broadly useful in several performance-oriented contexts to
reduce latency and/or increase throughput of certain ope
tions. Furthermore, it can help reducing network traffic.
10 alleviate congestion, which is a major cause of appli

In particular, a

happens on-path and at line rate is appealing since it bears no
cost o the application, which can spare CPU cycles for other
tasks instead. On the other hand. despite recent technological
advancements, network devices have limited compute power
and little storage o support general computation. Moreover,
systems designers are prescribed by the end-to-nd princi-
ple (28] to avoid implementing application-specific logic in

load balancer (SLB) servers can be replaced by a single
modern switching ASIC, potentially reducing the cost of load
balancing by over two orders of magnitude. Today, large data
centers typically employ hundreds or thousands of servers to
load-balance incoming traffic over application servers. These
software load balancers (SLBs) map packets destined to a
service (with a virtual IP address, or VIP), to a pool of servers
tasked with providing the service (with multiple direct IP
addresses, or DIPs). An SLB is stateful, it must always map
a connection to the same server, even if the pool of servers
changes and/or if the load is spread differently across the

is property is called per-connection consistency or
that the load balancer must keep track

of millions of connections simultaneously.

Until recently, it was not possible to implement a load
balancer with PCC in a merchant switching ASIC, because
high-performance switching ASICs typically can not maintain
per-connection states with PCC. Newer switching ASICs
provide resources and primitives to enable PCC at a large
scale. In this paper, we explore how to use switching ASICs to

build much faster load balancers than have been built before.

Our system, called SilkRoad, is defined in a 400 line P4
program and when compiled to a state-of-the-art switching
ASIC, we show it can load-balance ten million connections
simultaneously at line rate.
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1 INTRODUCTION
Stateful layer-4 (L4) load balancers scale out services hosted
in cloud datacenters by mapping packets destined to a service
with a virtual IP address (VIP) to a pool of servers with
multiple direct IP addresses (DIPs or DIP pool). L4 load
balancing s a critical function for inbound traffic to the cloud
and traffic across tenants. A previous study [36] reports that
an average of 44% of cloud traffic is VIP traffic and thus
needs load balancing function. Building cloud-scale L4 load
balancing faces two major challenges
Support full bisection traffic with low latency: Data centers
have rapid growth in traffic: doubling every year in Facebook
[11] and growing by 50 times in six years in Google [40].
While the community has made efforts to scale out L2/L:
virtual switching to match full bisection bandwidth for intra-
datacenter traffic (or full gateway capacity for inbound traffic)
[17, 30], one missing piece is scaling Lj load balancers to match
the full bisection bandwidth of the underlying physical network.
Load balancing is also a critical segment for the end-to-end
performance of delay-sens 3
latency data centers (e.g., 2-5 s RTT with RDMA [42]).
Ensure per connection consistency (PCC) during frequent
DIP pool changes: Data center networks are constantly chang-
ing to handle failures, deploy new . upgrade existing
se [24]. Each oper-
ational change can result in many DIP poul changes. For
example, when we upgrade a service, we need to bring down
DIPs and upgrade them one by one to avoid affecting the ser-
vice capacity. Such frequent DIP pool updates are observed
from a large web service provider with about a hundred of
data center clusters (§3.1).

During a DIP pool change, it is eritical to ensure per
connection consistency (PCC), which means all the packets
of a connection should be delivered to the same DIP. Sending
packets of an ongoing connection to a different DIP breaks
the connection. It often takes subseconds to seconds for
applications to recover from a broken connection (e.g., one
second in Wget), which significantly affects user experience.

Consensus at network speed In-Network Aggregation Stateful layer-4 load balancers

(e.g., for MapReduce, graph analytics, ML)

+ NetCache [sospP'17], NetChain [NSDI'1 8]
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ABSTRACT

This paper explores the possibility of implementing the wldcly
deployed Paxos consensus protocol in network devices.
present two different approaches: (i) a detailed design d:-

scription for implementing the full Paxos logic in SDN switches,

which identifies a sufficient set of required OpenFlow exten-

sions; and (i) an altemative, optimistic protocol which can
be implemented without changes to the OpenFlow API, but
relies on assumptions about how the network orders mes-
sages. Although neither of these protocols can be fully im-
plemented without changes to the underlying switch firmware,
we argue that such changes are feasible in existing hardware.
Moreover, we present an evaluation that suggests that mov-
ing Paxos logic into the network would yield significant per-
formance benefits for distributed applications.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Network operating systems;
C.4 [Performance of Systems]: Reliability, availability, and
(Perfo I
1

Keywords
Software-defined networking, Paxos, NetPaxos

1. INTRODUCTION

Software-defined (SDN) is ing the
way networks are configured and run. In contrast to tradi-
tional networks, in which forwarding devices have propri-
etary control interfaces, SDNs generalize network devices
using a set of protocols defined by open standards, including
most prominently the OpenFlow [24] protocol. This move
towards standardization has led to increased “network pro-
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grammability”, allowing ordinary programs to manage the
network through direct access to network devices.

Several recent projects have used SDN platforms to demon-
strate that applications can benefit from improved network
support. While these projects are important first steps, they
have largely focused on one class of applicatior . Hadoop

5,21, 36]), and on improving perfor-
ation (e.g.. route selection 15,
36), traffic prioritization [12, 36], or traffic aggregation [21]).
None of this work has fundamentally considered whether ap-
plication logic could be moved into the network. In other
words: how can distributed applications and protocols uti-
lize network programmability to improve performance?

This paper focuses specifically on the Paxos consensus
protocol [19]. Paxos is an attractive use-case for several
reasons. First, it is one of the most widely deployed pro-
tocols in highly-available, distributed systems, and is a fun-
damental building block to a number of distributed appl
tions [6, 14,9]. Second, there exists extensive prior research
on optimizing Paxos [20, 22, 31, 32], which suggests that
the protocol could benefit from increased network support.
Third, moving consensus logic into network devices would
require extending the OpenFlow API with functionality that
is amenable to an efficient hardware implementation 3, 5].

Implementing Paxos in the network provides a different
point in the design space, and identifies a different set of net-
work requirements for protocol implementors. This paper
presents two different approache:
of a sufficient set of OpenFlow extes
ment the full Paxos logic in SDN switche
native, optimistic protocol which can be implemented with-
out changes to the OpenFlow API, but relies on assumptions
about how the network orders messages.

Although neither of these protocols can be fully imple-
mented without changes to the underlying switch firmware,
we present evidence to show that such changes are feasible.
Moreover, we present an evaluation that suggests that mov-
ing consensus logic into the network would reduce appli-
cation ity, reduce application message latency, and

s; and (ii) an alter-
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increase transaction throughput.
In summary, this paper makes the following contributions:

ABSTRACT
Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?
In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
ulﬂu.xdmg part of |h:|r computation o execute in-network.
How tasks must be j
cmflcd lo mau.h the llmll.mon\ of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hard-
ware (o lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

1 INTRODUCTION

‘The advent of flexible networking hardware [6] and expres-

sive data plane programming languages [5, 29] have produced
The

Programmable networks create the opportunity for in-
network computation, i.c., offloading a set of compute opera-
tions from end hosts into network devices such as switches
and smart NICs. In-network computation can offer substan-
tial performance benefits, as it is for example the case with
consensus protocols [9, 10] and in-network caches [20]. Al-
though traditional networks are not capable of computation,
the idea of using the network not just to move data, but also
to perform on data is

of Active Networks [30], which proposed to replace packets
with small programs called “capsules” that are executed at
each traversed switch. However, for the past two decades
the hardware capabilities were lacking. This appears to be
changing.

The recently proposed RMT architecture (6] and its upcom-
ing incarnation in the Barefoot Networks Tofino [3] switch
chip has a flexible parser and a customizable match-action
engine. To process packets at high speed, this architecture has
amulti-stage pipeline where packets flow at line rate. Each
stage has a fixed amount of time to process every packet,
allowing for lookups in memory (SRAM and TCAM), manip-
ulating packet metadata and stateful registers, and performing
boolean and arithmetic operations using ALUs. Other ven-
dors are also introducing new classes of programmable chips
with similar capabilities [7]. We believe that with this new
generation of flexible data plane hardware it is worth revis-
iting a fundamental question: as networks become capable
of ion, what kinds of ion should networks

networks that are deeply
of networks can now be enriched without hardware changes
while retaining the capability of processing packets at very
high rates, even above Terabits per second. Emerging pro-
grammable network devices are paving the way for new ser-
vices to better support data center applications [9, 18] and
improve network monitoring [13, 16, 24-26].
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perform?
In this paper, we will consider this question in the scope
of data center applications because it is likely that data cen-
ters will be carly adopters of programmable networks and
many of these applications have stringent performance re-
On the one hand, can
be broadly useful in several performance-oriented contexts to
reduce latency and/or increase throughput of certain ope
tions. Furthermore, it can help reducing network traffic, s
10 alleviate congestion, which is a major cause of appli
In particular, a
happens on-path and at line rate is appealing since it bears no
cost o the application, which can spare CPU cycles for other
tasks instead. On the other hand. despite recent technological
advancements, network devices have limited compute power
and little storage o support general computation. Moreover,
systems designers are prescribed by the end-to-end princ
ple [28] to avoid implementing application-specific logi

University of Southern California Facebook

Jeongkeun Lee
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ABSTRACT

In this paper, we show that up to hundreds of software
load balancer (SLB) servers can be replaced by a single
modern switching ASIC, potentially reducing the cost of load
balancing by over two orders of magnitude. Today, large data
centers typically employ hundreds or thousands of servers to
load-balance incoming traffic over application servers. These
software load balancers (SLBs) map packets destined to a
service (with a virtual IP address, or VIP), to a pool of servers
tasked with providing the service (with multiple direct IP
addresses, or DIPs). An SLB is stateful, it must always map
a connection to the same server, even if the pool of servers
changes and/or if the load is spread differently across the
is property is called per-connection consistency or
he challenge is that the load balancer must keep track
of millions of connections simultaneously.

Until recently, it was not possible to implement a load
balancer with PCC in a merchant switching ASIC, because
high-performance switching ASICs typically can not maintain
per-connection states with PCC. Newer switching ASICs
provide resources and primitives to enable PCC at a large
scale. In this paper, we explore how to use switching ASICs to
build much faster load balancers than have been built before.
Our system, called SilkRoad, is defined in a 400 line P4
program and when compiled to a state-of-the-art switching
ASIC, we show it can load-balance ten million connections
simultaneously at line rate.

CCS CONCEPTS

« Networks — Programmable networks; Network manage-
ment; Data center networks:

KEYWORDS

Load balancing; Programmable switches

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first

c. Copyrights for components of this work owned by others than

ckbarwee, or rpublish, & post on sves or o tedisribute bo I
rioe spocific nermimion and/or & foe. Request pesralasions

from permbssionsGacmon

SIGCOMA 17, Avgust 21-45, 8017, Los dngules, CA, USA

oclstion for Couputing Mackioery

N 9781

Minlan Yu

Yale University

ACM Reference format:
Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Min-
lan Yu. 2017. SilkRoad: Stateful Layer-4 Load Balancing
F.ol and Cheap Using ICs. In Proceedings of SIG-
COMM ’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages
https://doi.org/10.1145/3008822.3008821

1 INTRODUCTION

Stateful layer-4 (L4) load balancers scale out services hosted
in cloud datacenters by mapping packets destined to a service
with a virtual IP address (VIP) to a pool of servers with
multiple direct IP addresses (DIPs or DIP pool). L4 load
balancing s a critical function for inbound traffic to the cloud
and traffic across tenants. A previous study [36] reports that
an average of 4% of cloud traffic is VIP traffic and thus
needs load balancing function. Building cloud-scale L4 load
balancing faces two major challenges

Support full bisection traffic with low latency: Data centers
have rapid growth in traffic: doubling every year in Facebook
[11] and growing by 50 times in six years in Google [40].
While the community has made efforts to scale out L2/L:
virtual switching to match full bisection bandwidth for intra-
datacenter traffic (or full gateway capacity for inbound traffic)
[17, 30], one missing piece is scaling Lj load balancers to match
the full bisection bandwidth of the underlying physical network.
Load balancing is also a critical segment for the end-to-end
performance of delay-sensitive applications [23] and for low
latency data centers (e.g., 2-5 s RTT with RDMA [42]).
Ensure per connection consistency (PCC) during frequent
DIP pool changes: Data center networks are constantly chang-
ing to handle failures, deploy new . upgrade existing
services, and react to the traffic increase [24]. Each oper-
ational change can result in many DIP pool changes. For
example, when we upgrade a service, we need to bring down
DIPs and upgrade them one by one to avoid affecting the ser-
vice capacity. Such frequent DIP pool updates are observed
from a large web service provider with about a hundred of
data center clusters (§3.1).

During a DIP pool change, it is eritical to ensure per
connection consistency (PCC), which means all the packets
of a connection should be delivered to the same DIP. Sending
packets of an ongoing connection to a different DIP breaks
the connection. It often takes subseconds to seconds for

applications to recover from a broken connection (e.g., one
second in Wget), which significantly affects user experience.

Consensus at network speed In-Network Aggregation Stateful layer-4 load balancers

(e.g., for MapReduce, graph analytics, ML)

+ NetCache [sospP'17], NetChain [NSDI'18]



NetCache: Balancing Key-Value Stores
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Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



NetCache solves the problem of load-balancing in
key-values stores observing dynamic, skewed workload

NetCache is a rack-scale key-value store that leverages
in-network data plane caching to achieve

billions QPS throughput % ~10 us latency

even under
highly-skewed & rapidly-changing
workloads.

New generation of systems enabled by programmable switches ©

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



NetCache solves the problem of load-balancing in
key-values stores observing dynamic, skewed workload

Key challenge: highly-skewed and rapidly-changing workloads

low throughput BN high tail latency

Load ==

H el = B =
Server = SSSS """ SSSS

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



It leverages that a small but very fast cache can provide
perfect load-balancing... in theory

Opportunity: fast, small cache can ensure load balancing

[B. Fan et al. SoCC’11, X. Li et al. NSDI'16]

Cache O(Nlog N) hottest items ()
E.g., 10,000 hot objects

AN BEEN
=l

N:#ofservers T T T - 0 0

E.g., 100 backends with 100 billions items

Requirement: cache throughput > backend aggregate throughput

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



NetCache relies on the O(billion) throughput of

programmable network devices to achieve it in practice

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

K\ flash/ disk

each: O(100) KQPS
total: O(10) MQPS

storage layer

, In-memory

each: O(10) MQPS
total: O(1) BQPS

cache

)

cache

)

, in-memory

0(10) MQPS

cache layer

= in-network

O(1) BQPS

Small on-chip memory?
Only cache O(N log N) small items

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017




It relies on a tailored UDP-based protocol, an de/encoding
scheme for storing variable length values, and sketches

Key-value caching in network ASIC at line rate ?!

0 How to identify application-level packet fields ?
0 How to store and serve variable-length data ?

0 How to efficiently keep the cache up-to-date ?

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Key-value caching in network ASIC at line rate

—» 0 How to i1dentify application-level packet fields ?
a How to store and serve variable-length data ?

a0 How to efficiently keep the cache up-to-date ?

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017




NetCache Packet Format

Existing Protocols
A

NetCache Protocol
|

—

OP SEQ KEY VALUE

1

\ Y . ' reserved read, write,
L2/L3 Routing port # delete, etc.

0O Application-layer protocol: compatible with existing L.2-1.4 layers

0 Only the top of rack switch needs to parse NetCache fields

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017




Key-value caching in network ASIC at line rate

0 How to i1dentify application-level packet fields ?
—» 0O How to store and serve variable-length data ?

a0 How to efficiently keep the cache up-to-date ?

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Key-value store using register array in network ASIC

Match pkt.key == pkt.key ==
Action process_array(0) process_array(1)
pkt.value: | A B
o 1 2 3
action process array (idx) : Al B
if pkt. == : .
tE pXt.op read Register Array

pkt.value =— array[idx]
elif pkt.op == cache update:

array[idx] -— pkt.value

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Variable-length key-value store in network ASIC?

Match pkt.key == pkt.key ==
Action process_array(0) process_array(1)

pkt.value: | A B
O 1 2 3
A|B
Register Array
Key Challenges:

O No loop or string due to strict timing requirements

0 Need to minimize hardware resources consumption
= Number of table entries
= Size of action data from each entry

= Size of intermediate metadata across tables

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Combine outputs from multiple arrays

Match pkt key == Bitmap indicates arrays that store the key’s value

Lookup Table (SN bitmap = 111 Index indicates slots in the arrays to get the value
index =0

Minimal hardware resource overhead

pkt.value: |AQ0[Al|A2

Match bitmap[0] == o 1 2 3
JNe: (o) Bl process_array_0 (index ) — A0 Register Array 0

Value Table 0

Match bitmap[1l] ==
et s Bl process_array_1 (index ) — |Al Register Array 1

Value Table 1

Value Table 2 Match bitmap|[2] == et A ,
Action process_array_2 (index ) — A2 egister Array

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Combine outputs from multiple arrays

Match pkt.key == pkt.key ==
Action bitmap = 111 bitmap = 110
Lookup Tabl
oo Tabe index = 0 ndlor = 1

pkt.value: [AQ|Al|A2 B0 | B1

Match bitmap[0] == o 1 2 3
Action process_array_0 (index ) — |AQ0|BO Register Array 0

Value Table 0

Match bitmap[1l] ==
Y Neiste) Ml process_array_1 (index ) — |Al|BI1 Register Array 1

Value Table 1

Value Table 2 Match bitmap|[2] == et A ,
Action process_array_2 (index ) — A2 egister Array

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Combine outputs from multiple arrays

Match pkt.key == pkt.key == pkt.key ==
Action bitmap = 111 bitmap = 110 bitmap = 010
Lookup Tabl
OOKup fable el = 1 el = 1 itk =7

pkt.value: [AQ|Al|A2 B0 | B1 CO0

Match bitmap[0] == o 1 2 3
Action process_array_0 (index ) — |AQ0|BO Register Array 0

Value Table 0

Match bitmap[1l] ==
Y Neste Bl process_array_1 (index ) — |A1[B1[C0 Register Array 1

Value Table 1

Value Table 2 Match bitmap|[2] == et A ,
Action process_array_2 (index ) — A2 egister Array

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Combine outputs from multiple arrays

Lookup Table

Value Table 0

Value Table 1

Value Table 2

Match pkt.key == pkt.key == pkt.key == pkt.key ==

Action bitmap = 111 bitmap = 110 bitmap = 010 bitmap = 101
index =0 index = 1 index = 2 index = 2

pkt.value: |AOQ|Al[A2 B0 | B1 C0 D0|D1

Match bitmap[0] == 0o 1 2

Action process_array_0 (index ) — |AQ0 B0 D0 Register Array 0

Match bitmap[1] ==

YNt Ml process_array 1 (index ) — |A1|B1|C0 Register Array 1

Match bitmap[2] == |

JNeste Bl process_array 2 (index ) — |A2 D1 Register Array 2

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017




Key-value caching in network ASIC at line rate

0 How to i1dentify application-level packet fields ?
a How to store and serve variable-length data ?

—> 0 How to efficiently keep the cache up-to-date ?

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Cache insertion and eviction

O Challenge: cache the hottest O(N log N) items with limited insertion rate

0 Goal: react quickly and effectively to workload changes with minimal updates

’ TN k o Data plane reports hot keys
[ o, | [ Cache Management J(

9 Control plane compares loads of
new hot and sampled cached keys

e Control plane fetches values for

L]

N y . keys to be inserted to the cache
Key-Value Query
| e SiALsiNEs a Control plane inserts and evicts keys
NS 2/
Tor Switch Storage Servers

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Query statistics in the data plane

freport
H BEEN T T
not cached . [T T T ] hot
ilEnn enll .
kt.ke - N
PR | Cache EEEEE | S—
Lookup Count-Min sketch oom triter
cached
o [ [T T T T T T T T TTTTT]

Per-key counters for each cached item

0 Cached key: per-key counter array

0 Uncached key
= Count-Min sketch: report new hot keys

= Bloom filter: remove duplicated hot key reports

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Data plane Performance
programmability Monitoring

Applications offloading

Platforms Data plane
Correctness programmability

Management



"Data-plane” programmability goes beyond
switch programmability (or P4 for that matter)
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Daniel Firestone ~ Andrew Putnam  Sambhrama Mundkur  Derek Chiou

Mike Andrewartha ~ Hari Angepat Vi

ivek Bhanu  Adrian C:

Harish Kumar Chandrappa ~ Somesh Chaturmohta  Matt Humphrey  Jack Lavier  Norman Lam

Fengfen Liu Kalin Ovicharov Jitu Padhye
Mark Shaw ~ Gabriel Silva  Madhan Sivakumar

Gautham Popuri ~ Shachar Raindel ~ Tejas Sapre
Nisheeth Srivastava  Anshuman Verma  Qasim Zuhair

Decpak Bansal  Doug Burger  Kushagra Vaid  David A. Maltz  Albert Greenberg
Microsoft

Abstract

Modem cloud architectures rely on each server running its
own networking stack to implement policies such as tun-
neling for virtual networks, security, and load balancing.
However, these networking stacks are becoming increas-
ingly complex as features are added and as network speeds
increase. Running these stacks on CPU cores takes away
processing power from VMs, increasing the cost of run-
ning cloud services, and adding latency and variability to
network performance.

We present Azure Accelerated Networking (AccelNet),
our solution for offioading host networking to hardware,
using custom Azure SmartNICs based on FPGAs. We
define the goals of AccelNet, including programmability
comparable to software, and performance and cfficiency
comparable to hardware. We show that FPGAs are the best
current platform for offloading our networking stac}
ASICs do not provide sufficient programmability, and em-
bedded CPU cores do not provide scalable performance,
especially on single network flows.

Azure SmartNICs implementing AccelNet have been
deployed on all new Azure servers since late 2015 in a
fleetof >1M hosts. The AccelNet service has been avail-
able for Azure customers since 2016, providing consis-
tent <15ps VM-VM TCP latencies and 32Gbps through-
put, which we believe represents the fastest network avail-
able o customers in the public cloud. We present the
design of AccelNet, including our hardware/software co-
design model, performance results on key workloads, and
experiences and lessons leamed from developing and de-
ploying AccelNet on FPGA-based Azure SmartNICs.

1 Introduction

The public cloud is the backbone behind a massive and
rapidly growing percentage of online software services [1.
2, 3]. In the Microsoft Azure cloud alone, these services.
consume millions of processor cores, exabytes of stor-
age, and petabytes of network bandwidth. Network per-
formance, both bandwidth and latency, is critical to most
cloud workloads, especially interactive customer-facing
workloads.
s a large public cloud provider, Azure has il s
1 ork on host hased software dofined network

all virtual networking features, such as private virtual net-
works with customer supplied address spaces, scalable L4
load balancers, security groups and access control lists
(ACLS), virtual routing tables, bandwidth metering, QoS,
and more. These features are the responsibility of the host
platform, which typically means software running in the
hypervisor.

The cost of providing these services continues to in-
crease. In the span of only a few years, we increased net-
working speeds by 40x and more. from 1GbE to 40GbE-

creasingly well-tuned and efficient host SDN packet pro-
cessing capabilities, running this stack in software on the
host requires additional CPU cycles. Buming CPUs for
these services takes away from the processing power avail-
able to customer VMs, and increases the overall cost of
providing cloud services.

Single Root /O Virtualization (SR-IOV) [4, 5] has been
proposed to reduce CPU utilization by allowing dire:
cess to NIC hardware from the VM. However, this di-
rect access would bypass the host SDN stack, making
the NIC responsible for implementing all SDN policies.
Since these policies change rapidly (weeks to months), we
required a solution that could provide software-like pro-
grammability while providing hardware-like performance.

In this paper we present Azure Accelerated Network-
ing (AccelNet), our host SDN stack implemented on the
FPGA-based Azure SmartNIC. AccelNet provides near-
native network performance in a virtualized environment,
offloading packet processing from the host CPU to the
Azure SmartNIC. Building upon the software-based VFP
host SDN platform [6], and the hardware and software
frastructure of the Catapult program [7, 8], AccelNet pro-
vides the performance of dedicated hardware, with the
programmability of software running in the hypervisor.
Our goal is to present both our design and our experiences
running AccelNet in production at scale, and lessons we
learned.

2 Background
2.1 Traditional Host Network Processing
In the traditional device sharing model of a virtualized

environment such as the public cloud, all network /O to
hysical device is exclusively nerformed.in th

[NSDI'1 8]
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HotCocoa: Hardware Congestion
Control Abstractions

Mina Monia Ghobadi
Tahmasbi Arashloo  Microsoft Research
Princeton University

ABSTRACT
Congestion control in multi-tenant data centers is an active
area of research because of its significant impact on customer
experience, and, consequently, on revenue. Therefore, new
algorithms and protocols are expected to emerge as the Cloud
evolves. Deploying new congestion control algorithms in the
end host’s hypervisor allows frequent updates, but proc

David Walker

Princeton University

Jennifer Rexford
Princeton University

of new and evolving technologies [12]. Thus, as Cloud com-
puting evolves and new approaches are introduced either by
humans 11, 16] or machine leaming techniques [13, 32, there
is a growing need to enable programmability of CC algorithms.

Having no control over the CCalgori Ms, opera-
tors may deploy their CC algorithms in the hypervisor [11, 16].
While this approach enable Ircquv.‘nl upd.ucx o the CC

ing packets at high rates in the hypervisor and
the lements of a congestion contol algorithn, such as taf

itincurs well-s for
doing congestion control and pdtkc: ~w|uh|ng in software.

fic shapers and timestamps, in software have
inaccuracies and CPU inefficiencies. In this paper, we argue
for implementing the entire congestion control algorithm in

programmable NICs. To do so, we identify the absence of
hardware-aware programming abstractions as the most imme-
diate challenge and solve itusing a simple high-level domain
specific language called HotCocoa. HotCocoa lies at a sweet
spot between the ability to express a broad set of conges

trol algorith hardware

offers a set of hardware-aware COngestion COntrol Abstr:
tions that enable operators to specify their algorithm with-
out having to worry about low-level hardware primitives. To
evaluate HotCocoa, we implement four congestion control
algorithms (Reno, DCTCP, PCC, and TIMELY) and use sim-

fectly tracks the behavior of a native implementation in C++.

1 INTRODUCTION

‘Today, congestion control (CC) algorithms play a central role
ina data center network’s efficiency and its tenants” quality
of experience. Hence, a significant number of congestion
control algorithms concentrate on data center networks, which
greatly benefit from customizing their infrastructure o serve
their specific workloads and tenants [3, 4. 8,9, 23,29, 31,33,
“This trend is likely to continue, given the impact of network
congestion on data centers” revenue and their rapid adoption

traffic shaping in dd 4% to CPU
utilization [27]. Moreover, software-based rate control engines
rely on software timers to timestamp packets. These timers
are inaccurate as they drift orders of magnitude compared
o hardware timers [20, 22, 23]. Worse yet, merely switching
packets between the NIC and VMs at 10Gbps can utilize upto
455% of CPUs on a 12-core machine [16]. Thus. with 100Gbps
NICs on the horizon, implementing traffic shaping, and similar
per-packet stateful processing, at line rate in the hypervisor
requires additional CPU cores and memory that could have
otherwise been sold to tenants,

To free up CPU cycles on servers, several techniques
have been developed for offloading various networking
functions to the NIC (e.g., TCP Segmentation Offload [10]
and Generic Reccive Offload [2]). More recent technologies
such as Single Root 1/O Virtualization [17) enable VMs to
bypass the hypervisor and send packets directly to the NIC,
thus triggering efforts to offload VM network policies (e.g..
tnneling, NAT, ACLS, etc.) to the NICs [15]. We take thi
idea 1o its extreme and propose to implement the entire CC
algorithmitself in the programmable NICs [24,26, 30), w
are becoming widely deployed [14,21]

Programming hardware, however, requires niche expertise;
even then, it is challenging and time-consuming. The APIs
for programmable NIC (e.g.. Verilog, and on occasion P4 [7])
are extremely low levl, nd fcee netwek opersors o nk

Permission to make digital or hard copies of all or part of this work for

i ot and he ull ationonhe it pge. Copyights o componens

ereditis permitted. To copy pronkesiy urn’mhh\ 10 poston servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm. org.
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ACM ISBN 978-1-4503-5569-8/17/11....$15.00
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interms of a constrain ahigh
level algorithm. Thus, it takes \lgmhunl effort to correctly
develop and deploy a new CC algorithm using these APIs.

n this paper, we argue for a simple high-level domain-
specific language (DSL) for specifying congestion control
algorithms in hardware. In other words, our goal is to find a
sweet spot that s ex pressive enough to capture a wide range
of congestion control algorithms while being implementable
iven ealstc hardware conszaints. Reviewing the extensive

control, we obs common
structure across different CC algorithms to enable the
definition of higher-level abstractions that give opera

[HotNets'1 7]
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ost-based programmability + SmartNICs +

rogrammable switches = fully programmable platforms

Big question is

How to combine them best?
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Adrian Caulfield Paolo Costa
Microsoft Research
pcosta@ microsoft.com

Microsoft Research
acaulfie @microsoft.com

Abstract—FPGA-based  SmartNICs and  programmable
switches have been recently introduced to leverage hardware
acceleration and custom pipelines inside the cloud infrastructure.
These devices are capable of ing the per-packet il
needs at line rate, including load balanci
congestion management, and security. We argue, however, that
the benefits provided by these new devices could extend beyond
software-defined networking use cases and they prompt a shift
towards a fully programmable cloud, which would enable
hardware-software co-design across all layers, ranging from
application to hardware and networks. In this paper, we focus
on the potential of FPGA-based SmartNICs and programmable
switches to realize this vision and illustrate some of the research
challenges that need to be addressed to fully unleash its benefits.

I. INTRODUCTION

The continuous growth of cloud applications [1] is driving
a steady increase in network infrastructure’s bandwidth [2].
However, the compute cycles—measured by the number of
CPU cycles required to process each packet—are falling
behind the massive acceleration in available network band-
width [3]. As a result, CPU time is increasingly becoming a
contributor to the per-packet latency in high-speed cloud data
centers. To make matters more challenging, modern clouds
are bracing a fully software-defined network (SDN) and
are increasingly expected to perform complex network policies
such as regular expression matching and encryption [4]. Such
policies drive up the per-packet CPU cycles, which in turn
increases the cloud costs and adds unpredictable latency to
the cloud services.

Traditionally, this has been addressed by offloading various
networking functions to the Network Interface Cards (NICs)
such as TCP Segmentation Offload [5] and Generic Receive
Offload [6]. However, these techniques are not flexible enough
to support complex policies. Techniques such as SR-IOV en-
able VMs to bypass the hypervisor and send packets directly to
the NIC [7]. PCle Process Address Space ID (PASID) reduces

Monia Ghobadi
Microsoft Research
mgh@microsoft.com

bandwidth growth in the coming years [4], [8]-[11]. Today’s
FPGA-based SmartNICs are capable of tracking user-defined
state, conducting basic integer arithmetic, and rate limiting
at line rate [10]. Moreover, FPGAs organize computation
spatially, hence data flows through the computation in a
pipeline. This minimizes or eliminates latency jitter and pro-
vides strong about th hput. C quently, the
research community has turned its attention towards building
platforms and programming languages around FPGA-based
SmartNICs [4], [12]-[14].

Most prior work treats the FPGA and the NIC domains
separately by either focusing on the FPGA capabilities as a
generic device or focusing on the NIC functions. In this paper,
we tum our attention into the combined domains and argue
that an FPGA-based SmartNIC should be thought of as both
a programmable FPGA-based accelerator and a networking
device. When combined with recently proposed programmable
switches, e.g.. [15], [16]. this opens up exciting opportunities
to rethink the way in which we design and deploy applications
and network functions. We argue that we should move away
from the traditional strict boundary between network and
application functions towards a fully programmable cloud,
in which application logic can be distributed across multiple
accelerators and network devices.

A fully programmable cloud provides significant benefits to
applications that run in it. These benefits include application
specific control of network flows, the ability to run code
at precisely the right location in the network hierarchy, and
direct, low latency access to the network. For example, in
a large-scale machine learning workload. a neural network
running on a distributed set of SmartNICs would benefit from
the direct interface to the network to reduce inference and
training | ies. Further, prc bl itches running
custom flow management code can reduce latency and opti-
mize bandwidth by scheduling flows in an application-specific
way, improving efficiency. Finally, the switch could even host

the hardware resource requi of SR-IOV, bling it
to scale to support containers or even individual processes.
But, these techniques bypass the hypervisor, making it hard to
enforce SDN-like policies.

Recently, FPGA-based SmartNICs have been introduced
as a new platform that enables network operators a flexible
environment to offload complex network policies and maintain

a server, directly performing aggregation of the
training weights from the SmartNICs below it.

After summarizing the key technology underpinning Smart-
NICs in Section II, we describe our vision underlying the fully
programmable cloud in Section III. Implementing this vision,
however, requires solving a number of novel and exciting
research questions, which we outline in Section IV.

IEEE International Conference on

High Performance Switching and Routing, 2018
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So you've a programmable networks...

How do you make sure that it works as it should?!

=) p4v.pdf (page 1 of 14)

p4v: Practical Verification for Programmable Data Planes’
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ABSTRACT

‘We present the design and implementation of p4v, a prac-
tical tool for verifying data planes described using the P4
programming language. The design of p4v is based on clas-
sic verification techniques but adds several key innovations
including a novel mechanism for incorporating assumptions
about the control plane and domain-specific optimizations
which are needed to scale to large programs. We present case
studies showing that p4v verifies important properties and
finds bugs in real-world programs. We conduct experiments
to quantify the scalability of p4v on a wide range of addi-
tional examples. We show that with just a few hundred lines
of control-plane annotations, p4v is able to verify critical
safety properties for switch.p4, a program that implements
the functionality of on a modern data center switch, in under
three minutes.

Han Wang
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1 INTRODUCTION

Suppose you wanted to verify the correctness of a network
data plane. How would you do it? One approach, which
is widely used today, is to rely on exhaustive testing—i.e.,
generate a set of input packets and test whether the device
produces the expected outputs. Testing is expensive, since
modern devices handle dozens of different packet formats
and protocols, each requiring distinct test inputs. But with a
conventional device these costs are paid only once, because
its capabilities are “baked in” at manufacturing time and
cannot be changed by programmers.

Recently, the field has started to shift to more flexible plat-
forms in which data-plane functionality is not controlled
by vendors but can be defined by programmers. The idea
is that the programmer describes the functionality of the
device using a program in a domain-specific language such
as P4 [5, 44, 45], and the compiler generates an efficient im-
plementation for the underlying target device. This approach
not only facilitates rapid innovation, since new protocols can
be deployed without having to spin new hardware, it also
opens up opportunities for novel uses of the network—e.g., in-
band network telemetry [26] and in-network caching [28, 29]
to name a few. While increased programmability offers ben-
efits, it also creates challenges related to correctness.

Example. Consider a “bump in the wire” firewall that uses
acl and nat tables to filter and rewrite incoming packets
(Figure 1 gives an implementation in P4). Suppose we wish
to verify that if acl is populated with rules that drop packets
going to a given internal host, the host will be isolated from
the external network. Even for this simple property, several
complications can arise, illustrating the need for verification.

First, the behavior of the program that implements the
firewall may be undefined on certain kinds of packets since,
according to the P4 language specification [44], reading or
writing an invalid header produces an arbitrary result. In par-
ticular, although the acl table correctly matches and filters
away IPv4 packets sent by external hosts, it might incorrectly
forward other types of packets such as IPv6. Second, there
is potential for confusion between internal and external ad-
dresses. If the program executes the acl table before the nat
table, then the rules intended to filter away external traffic

[SIGCOMM'1 8]

ene = vera.pdf (page 1 of 15)
o-falaln /7 -|a)o]a
Debugging P4 programs with Vera
Radu Stoenescu  Dragos Dumitrescu  Matei Popovici  Lorina Negreanu
Costin Raiciu
University Politehnica of Bucharest
firstname lastname@cs.pub.ro
ABSTRACT to network functionality can introduce bugs that may cause

We present Vera, a tool that verifies P4 programs using sym-
bolic execution. Vera automatically uncovers a number of
common bugs including parsing/deparsing errors, invalid
memory accesses, loops and tunneling errors, among others.
Vera can also be used to verify user-specified properties in a
novel language we call NetCTL.

To enable scalable, exhaustive verification of P4 program
snapshots, Vera automatically generates all valid header lay-
outs and uses a novel data-structure for match-action pro-
cessing optimized for verification. These techniques allow
Vera to scale very well: it only takes between 5s-15s to track
the execution of a purely symbolic packet in the larsest P4
program currently available (6KLOC) ®°

great damage. Recently, faulty routers in two airline net-
works have grounded airplanes for days (for both Delta and
Southwest Airlines), showing just how disruptive the cffects
of incorrect network behavior can be. Given the momentum
behind programmable networks, we expect such faults and
‘many others will cripple programmable networks.

In this paper, we argue that dataplane programs should
be verified before deployment to enable safe operation. We
present Vera, a verification tool that enables debugging of P4
programs both before deployment and at runtime. Atits core,
Vera translates P4 to SEFL, a network language designed for
verification, and relies on symbolic execution with Symnet
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of introducing bugs increases significantly. Verification can help
prevent bugs by assuring that the program does not violate its re-
quirements. Although research on the verification of P4 programs
i very active, we still need tools to make easier for programmers to
express properties and to rapidly verify complex invariants. In this
paper, we leverage assertions and symbolic execution to propose
amore general P4 verification approach. Developers annotate P4
programs with assertions expressing general network correctness
properties; the result is transformed into C models and all possi-
ble paths symbolically executed. We implement a prototype, and
use it to show the feasibility of the verification approach. Because
symbolic execution does not scale well, we investigate a set of tech-
niques to speed up the process for the specific case of P4 programs.
We use the prototype implemented to show the gains provided by
three speed up techniques (use of constraints, program slicing, par-
allelization), and experiment with different compiler optimization
choices. We show our tool can uncover a broad range of bugs, and
can doit in less than a minute considering various P4 applications.
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network due to incorrect implementations.

i verification and are comple-
mentary approaches that can help solve this problem. During devel-
opment, datapl i
awide range of inputs and checking if the corresponding outputs
match the expected behavior. Verification, on its turn, can be used
on programs to find bugs that would violate any of the properties
stated by their requirements, including bugs that are hard to re-
produce in testing. Lastly, with enforcement, the data plane can be
monitored during execution to trap and block actions that would
result in property violations.

In this paper, we focus on verification: we propose an approach to
model and check (at compile time) general security and correctness
properties of P4 programs, and implement it in a tool that provides
network verification in feasible time. Several approaches have been
developed to check if a given fixed-function (non-P4) data plane
satisfies a set of intended properties [8, 25, 29, 32). Moreover, verify-
ing Pd-programmed data planes s an active area of research, with
recent projects proposing verification techniques based on SMT
solving (24, 27] and custom symbolic execution [33]". In contrast,
this work shows how to efficiently verify P4 programs leveraging a
popular, off-the-shelf symbolic execution engine [4]

We propose an expressive assertion language (highly influenced
by P4) that enables programmers to specify their intended prop-
erties by annotating their P4 code. Once annotated, a program is
symbolically executed, with assertions being checked while all its
paths are traversed. Given that the time taken to perform the sym-
bolic execution grows exponentially with the program complexty,
we show how a variety of speed up techniques can be employed to
reduce the verification time and number of executed instructions.
These techniques consist of using annotations in code to constrain
the paths to be traversed according to properties and/or protocols
of interest, program slicing to reduce the complexity of the model
under verification, and parallelization of symbolic execution. Be-
sides, we experiment with code optimization features offered by
current compilers.

‘To evaluate our approach, we built a prototype using KLEE [4]
and the P4 Reference Compiler [20] for the current language version,
Pizg. We applied it to four real P4 applications collected from the
literature: Switch [21], NetPaxos [5], Dapper [11], and DC.p4 [31).
o .

that uncover
abroad range of bugs either in the data plane program itselfor in its
control plane configuration. A detailed performance analysis also
shows that, although i

1 [24,33] were independently developed a the same time as this work.
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So you've a programmable networks...
How do you make sure that it works as it should?!
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ABSTRACT 1 INTRODUCTION

We present the design and implementation of p4v, a prac-
tical tool for verifying data planes described using the P4
programming language. The design of p4v is based on clas-
sic verification techniques but adds several key innovations
including a novel mechanism for incorporating assumptions
about the control plane and domain-specific optimizations
which are needed to scale to large programs. We present case
studies showing that p4v verifies important properties and
finds bugs in real-world programs. We conduct experiments
to quantify the scalability of p4v on a wide range of addi-
tional examples. We show that with just a few hundred lines
of control-plane annotations, p4v is able to verify critical
safety properties for switch.p4, a program that implements
the functionality of on a modern data center switch, in under
three minutes.
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Suppose you wanted to verify the correctness of a network
data plane. How would you do it? One approach, which
is widely used today, is to rely on exhaustive testing—i.e.,
generate a set of input packets and test whether the device
produces the expected outputs. Testing is expensive, since
modern devices handle dozens of different packet formats
and protocols, each requiring distinct test inputs. But with a
conventional device these costs are paid only once, because
its capabilities are “baked in” at manufacturing time and
cannot be changed by programmers.

Recently, the field has started to shift to more flexible plat-
forms in which data-plane functionality is not controlled
by vendors but can be defined by programmers. The idea
is that the programmer describes the functionality of the
device using a program in a domain-specific language such
as P4 [5, 44, 45], and the compiler generates an efficient im-
plementation for the underlying target device. This approach
not only facilitates rapid innovation, since new protocols can
be deployed without having to spin new hardware, it also
opens up opportunities for novel uses of the network—e.g., in-
band network telemetry [26] and in-network caching [28, 29]
to name a few. While increased programmability offers ben-
efits, it also creates challenges related to correctness.

Example. Consider a “bump in the wire” firewall that uses
acl and nat tables to filter and rewrite incoming packets
(Figure 1 gives an implementation in P4). Suppose we wish
to verify that if acl is populated with rules that drop packets
going to a given internal host, the host will be isolated from
the external network. Even for this simple property, several
complications can arise, illustrating the need for verification.

First, the behavior of the program that implements the
firewall may be undefined on certain kinds of packets since,
according to the P4 language specification [44], reading or
writing an invalid header produces an arbitrary result. In par-
ticular, although the acl table correctly matches and filters
away IPv4 packets sent by external hosts, it might incorrectly
forward other types of packets such as IPv6. Second, there
is potential for confusion between internal and external ad-
dresses. If the program executes the acl table before the nat
table, then the rules intended to filter away external traffic

[SIGCOMM'1 8]



P4 by example

e P4is alow-level language — many gotchas

e Let's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {

reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

}

action allow() {
modify field(std_meta.egress spec, 1);
}

action deny() { drop(); }

What could possibly go wrong?

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

Can read values from a previous packet ?

— Side channel vulnerability! action allow() {
modify_field(std_meta.egress_spec, 1);

}
Real programs are complicated:

hard to keep validity in your head

action deny() { drop(); }

Property #1: header validity

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



What if acl table misses (no rule matches)?
Forwarding decision is unspecified

What goes wrong

Forwarding behaviour depends on control ingress { apply(acl); )
hardware e
reads { ipv6.dstAddr: lpm; }
e May not do what you expect! actions { allow; deny; }

e Code not portable ’

action allow() {
modify field(std_meta.egress _spec, 1);
}

action deny() { drop(); }

Property #2: unambiguous forwarding

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Types of properties

General safety
e Header validity
e Arithmetic-overflow checking
e Index bounds checking (header stacks, registers, meters, ...)

Architectural
e Unambiguous forwarding
e Reparseability
e Mutual exclusion of headers
e (Correct metadata usage (e.g., read-only metadata)

Program-specific
e (Custom assertions in P4 program — e.g., IPv4 tt1 correctly decremented

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Challenge #1: imprecise semantics

Source
Program

» OO

[

( GCL Program )

'

p4c-loﬁ;\o

|

[ Symbolic Executor %.'.
Tofino model

'

[ Expected Output )<_>( Actual Output )

same?

v

e P4 language spec doesn't give
precise semantics
e Defined semantics by translation to
GCL (a simple imperative language)
e Tested semantics
o Symbolically executed GCL to
generate input-output tests for
several programs
o Ran w/ Barefoot P4 compiler &
Tofino simulator

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018




Challenge #2: modelling the control plane

e A P4 program is just half the program »
o Table rules are not statically known é][;
o Populated by the control plane at run time ~

e Control planes are carefully programmed \/

o Tables rarely take arbitrary actions

e To rule out false positives, need to model behaviour of P

control p|aﬂ€ ( @[ Action ] acl <hit> (allow);

std_meta.egress_spec := 1)
table acl {
reads { [1] ( @ Action ] acl <hit> (deny);
| ipv6.dstAddr: lpm; std _meta.egress spec := 511)
actions { allow; deny; } [1 @[ Action ] acl <miss>

}

Tables translated into unconstrained nondeterministic choice

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



p4v overview

Automated tool for verifying P4 programs

Considers all paths

o But also practical for large programs
Includes basic safety properties for any program

Extensible framework

o Verify custom, program-specific properties

o Assert-style debugging

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018




Data plane Performance
programmability Monitoring

Applications offloading

Platforms Data plane
Correctness programmability

Management



How do you manage it?!

How do you perform planned maintenance?

now that you've state in your switches...

How do you run multiple applications in your switches?

monitoring, forwarding, load-balancing, etc.

How do you share resources amongst applications?

especially memory and # packet operations



We need an Operating System for the data plane

Definition operating system
Wikipedia manages hardware and software resources

provides common services

Do we have that? Nope.



We're working on
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Swing State: Consistent Updates for Stateful and
Programmable Data Planes

Shouxi Luo*  Hongfang Yu
University of Electronic Science and
Technology of China

ABSTRACT

With the rise of stateful programmable data planes,
a lot of the network functions that used to be imple-
mented in the controller or at the end-hosts are now
moving to the data plane to benefit from line-rate pro-
cessing. Unfortunately, stateful data planes also mean
more complex network updates as not only flows, but
also the associated states, must now be migrated con-
sistently to guarantee correct network behaviors. The
main challenge is that data-plane states are maintained
at line rate, according to possibly runtime criteria, ren-
dering controller-driven migration impossible.

We present Swing State, a general state-management
framework and runtime system supporting consistent
state migration in stateful data planes. The key insight
behind Swing State is to perform state migration en-
tirely within the data plane by piggybacking state up-
dates on live traffic. To minimize the overhead, Swing
State only migrates the states that cannot be safely re-
constructed at the destination switch.

We implemented a prototype of Swing State for P4.
Given a P4 program, Swing State performs static analy-
sis to compute which states require consistent migration
and automatically augments the program to enable the
transfer of these states at runtime. Our preliminary re-
sults indicate that Swing State is practical in migrating
data-plane states at line rate with small overhead.

CCS Concepts

Laurent Vanbever
ETH Zirich

Keywords
Network updates; Software-Defined Networking; P4;
Stateful programmable data planes.

1. INTRODUCTION

By enabling stateful applications to run directly in
the data plane, at line rate, programmable data planes [9,
22,8, 28,27, 16, 23] have recently emerged as a promis-
ing research area.

Yet, despite making SDNs more powerful, maintain-
ing states in the data plane also calls for new consistent
update mechanisms as it prevents traditional update
techniques from working, and this, for three main rea-
sons. First, the fact that data-plane states can be up-
dated at line rate—at speeds that can reach Thps [5]
prevents any software-based controller from consistently
moving states from one device to another. Inconsistent
migration is a problem for any data-plane application
that requires strong-consistency network-wide. Exam-
ples of such applications include stateful firewalls track-
ing dynamic flow characteristics (e.g., low-level TCP
states [29]) or anomaly detection applications [21]. Sec-
ond, even ignoring states dynamism, the exact set of
states to be migrated may actually be unknown to the
controller, preventing it from performing the migration
in the first place. Indeed, the states location in memory
can differ from device to device according to runtime
factors (e.g. a hash computed on packet headers) that
are invisible to the controller. Third, data-plane states



Swing State Is a state management
framework with 1 primitive: moveStates

Swing State Controller

moveStates (s3, s4, f1) ’

@deploy @runtime %
Analyze & Manage | SDN
augment states - Controller
53 =g 2
S2
__———
Sl=——y \ i _

[ Y P

=

Source: Swing State: Consistent Updates for Stateful and Programmable Data Planes
Luo et al., SOSR 2017
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The group project starts next week
50%



The evaluation of your project will depend on
yvour implementation, report, and presentation



The evaluation of your project will depend on
yvour implementation, report, and presentation

implementation achieves the basic goals
is properly documented

runs + results can be reproduced



The evaluation of your project will depend on

yvour implementation, report, and presentation

implementation
70%

achieves the basic goals
is properly documented

runs + results can be reproduced

You'll have to write
a detailed README



The evaluation of your project will depend on
yvour implementation, report, and presentation

report describes the main building blocks
evaluates the solution

describes what each group member did



The evaluation of your project will depend on
yvour implementation, report, and presentation

presentation summarizes the problem and the solution
contains a live demo

involves all group members



The final deadline for the project is
Wed Dec 16 at 23.59pm

This week

Every week

Select a proposal from the list (adv-net.ethz.ch)
or send us your own proposal by email

Meet with the responsible assistant

Send us an archive with report, code, slides

Groups presentation + course/exam debrief
attendance is mandatory



The project has to be done in groups of 3 students

Project grade is shared by each group member
provided that each collaborated

Let us know if that's not the case

Briefly describe in the report the contribution
of each group member

Each group member should be involved in
the presentation



If you want to propose your own project,
send us an email describing it by Thu Oct 31 11.59am

lvanbever@ethz.ch, cedgar@ethz.ch
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SDNSec: Forwarding Accountability for SDN Data Plane

Current data plane lacks
accountability:

X Enforcing forwarding
policies

X Validating that policies have
not been violated

X Consistency guarantees
under reconfiguration



SDNSec: Forwarding Accountability for SDN Data Plane

With SDNSec:

v" Ingress-switch adds path in
header

v~ Core-switches extract header,
decrypt and forward

v~ Controller verifies policy



Herding the Elephants: Detecting Network-Wide
Heavy Hitters with Limited Resources

Separating elephant from mice is
Accuracy key in network management:

Coordinator

é N A % X Sampling is not accurate
= Communication | and results are delayed
= 7

oy

v "
X App-specific sketches limit
E network visibility

State | State State |
Data Structure




Herding the Elephants: Detecting Network-Wide
Heavy Hitters with Limited Resources

flow

count
40

flow

count

2

1

Global

flow count

120

200

Elephant >100

30

Local

mule

>20

mole

<20

mice

<5

v

v

Herd provides accuracy
hetwork wide

Switches allocate resources
based on flow type

Switches notify controller
when local heavy hitter

Controller finds global
heavy hitters



Retroactive Packet Sampling for Traffic Receipts

X Network nodes could cheat in
Domain x monitoring

X Performing better for
selected samples

v~ Delayed disclosure mechanism

" . revents |t
Hpo pm <(R— p

quiet period v v~ Estimates loss-rate and
‘ Monitor
delay from controller
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Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19

TCP retransmits
over time

L /\A_/\ primary

TCP flows

backup #1



Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19

Goal: improving blink

TCP retransmits
over time

L/\,/\J\ orimary 1. Selecting flows with low RTTs

2. Monitoring backup next-hops
backup #2 continuously to reroute faster

3. Monitoring the throughput
to improve accuracy

TCP flows

backup #1



NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17 (for 2 students only)

Traditional way to implement a key value store:

flash/disk cache ‘ in-memory

O(100) KQPS O(10) MQPS




NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17 (for 2 students only)

Traditional way to implement a key value store:

flash/disk cache / ® i-memory
O(100) KQPS 0(10) MQPS
NetCache:
/ e cache BAREFCO:T
In-memory NETWORKS
in-network

O(10) MQPS O(1) BQPS




NetChain: Scale-Free sub-RTT Coordination
NSDI’18 (for 2 students only)

Traditionally, key-value stores are
replicated for fault-tolerance

request l I replay
Coordination servers
running a consensus protocol




NetChain: Scale-Free sub-RTT Coordination
NSDI’18 (for 2 students only)

Traditionally, key-value stores are

replicated for fault-tolerance NetChain
requestl I replay requestl T replay

= E B8

Coordination servers Coordination switches
running a consensus protocol running a consensus protocol
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NetHide: Secure and Practical
Network Topology Obfuscation

If | receive a packet to X with TTL = |,
| should send it to Y with TTL =




pForest: In-Network Inference

with Random Forests

Parser

N4

Features
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iTAP: In-Network Traffic Analysis Prevention
Using Software-Defined Networks
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Fast String Searching on PISA

P4 is very limited, e.g. it cannot work with strings.

Or can it? It can even handle regular expressions!

Match
d Og Action
*

9 state|chars
0 do set state (1)
Q G 9 3 og accept (4)
1 g * accept (2)
do o O

*d set state (3)

Translate regex Execute automaton
to automaton. using recirculation.

$ grep P4\

lecture.txt

Compare to grep
and co.



SilkRoad: Making Stateful Layer-4 Load Balancing
Fast and Cheap Using Switching ASICs

SilkRoad using a P4 switch to replace software load balancers.
It can handle millions of stateful connections using multi-level caching.

S oftwareg'{@f'r'f!gn ...... Switch API k.’.‘.‘?ﬁ.’.’.’fﬁ’g I
Hardware '-e.am'ins 0.8
: filter
_ : 0.6
y [ ht : v
ConnTable o VIPTable DIPPoolTable 0.4
(Digest = Version) | misS| (VIP = Version) |no updat; > (VIP, Version = DIP) 0.2 : : :
VIPin update|  (yse new1\‘/ersion) 1 0 ’ l
DMatCh action tables Trans;tTable ‘l'miss 10 100 IK IOKIOOK IM IOMIOOM
DTransactional memory| (Cache pending conn) J™ 1 (use old version)
In the control-plane: In the data-plane: Evaluation:
Accept incoming Keep track of Test performance at

connections. existing connections. large scale.



A Distributed Algorithm to Calculate
Max-Min Fair Rates Without Per-Flow State

s-Perc is a congestion control algorithm that proactively assigns
per-flow sending rates without per-flow state on devices.

[

=
N & OO 0O N B O O

Algorithm 4 s-PERC: link [ processing control packets for flow f.
Differences from n-PERC are highlighted.
1: b, x, s : vector of bottleneck, allocated rates, bottleneck states in packet (initially, oo, 0, E, respectively)

rate (Gbps)

- TCP flow 1
— TCP flow 2

2: i: vector of ignore bits in packet (initially, 1)
3: SumE, NumB : sum of limit rates of E flows, and number of B flows at link
4: MaxE, MaxE': max. allocated rate of flows classified into E since last round (and in this round, respectively) at link

5: if s[l] = E then > Assume flow is not limited, for bottleneck rate calculation
6: s[l] «B

7: SumE « SumE - x

8: NumB < NumB +1

9: b « (¢ — SumE)/NumB
10: foreach link j:

11: if i[j] = 0 then p[j] < b[;] else p[j] « oo > Propagated rates
12: p[l] « o > Assume the link’s own propagated rate is co

rate (Gbps)

— DCTCP flow 1
— DCTCP flow 2

fuy
o

15: b[l] « b, x[I] « x > Save variables to packet
16: if b < MaxE theni[l] « 1 elsei[l] <0 » Indicate if rate b[/] should be ignored.
17: if flow is leaving then NumB < NumB — 1 > Remove flow f
18: elseif e < b then

19: s[l] < E

20: SumE « SumE + x

21: NumB < NumB -1

22: MaxE « max(x, MaxE); MaxE' « max(x, MaxE’).

rate (Gbps)

— S-PERC flow 1
— S-PERC flow 2
20 40 60 80 100
time (ms)

In the control-plane: In the data-plane: Evaluation:
Implement the Create and parse Compare with TCP
s-Perc algorithm. control messages. and other protocols.



Millions of Little Minions: Using Packets for

Low Latency Network Programming and Visibility

In active networks, packets carry programs, which are run by switches.

Instruction

112

3

4

5

LOAD, PUSH

TPP Application ID

STORE, POP

CSTORE

Instructions

CEXEC

Packet memory

(Initialized by end-hosts)

Compile and start
packet programs.

7

2 bytes

8 bytes
4 bytes

Up to
20 bytes

40-200
bytes

Parse packets and
execute instructions.

=70
S 60

=50/
540}

2130

§’20—
=10}

=0

Proportional fairness

qu

flow b |

flow a

v
. flowc

0 10 20 30 40 50 60 70 80
Time (s)

Test the performance

of p

acket programs.
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DIBS: Just-in-time congestion mitigation for Data Centers

currently

©DC patterns can cause
congestion.

oSwitches drop packets they
cannot buffer.

with DIBS
Forward ——— * detours to neighboring
Detour < = = = = switches.

*minimizes drops, which speeds
up job completion time.
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Marple: Language-Directed Hardware Design for Network
Performance Monitoring

) 3kThe operator writes a query in a
@5 Queries ] domain-specific language called
L ’Nlarple programs Marple.

Query Compiler ]

Results

| 5k The query is compiled into a
— Switch programs .
= = = = ==X N switch program that runs on the
. | A network's programmable switches,
Q) Tocomection | "—i )—?/" augmented with new switch
C - S — = R _hardwa_lre primitives that we design
| : ] in service of Marple.

P

.\

Programmable switches
with the key-value store

3k The switches stream results out to
collection servers, where the
operator can retrieve query
results.
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007: Democratically Finding the Cause of Packet Drops

L14 -

L14

L34

T;; € 10,1}

Need to detect short-lived & concurrent failures despite noise
k007 scales by uses traceroute to find paths of flows that had packet drops
%007 finds faulty links democratically democracy by letting hosts vote

Implementation with p4 switches.
kdetect retransmissions in switches
kissue traceroutes directly from data plane
kcombine traceroutes in control plane
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Hardware-Accelerated Network Control Planes

Modern programmable devices can perform small This paper shows how to leverage that to run
computations on billions of small packets per control plane algorithms directly in the data
second. plane
prefix-to- ;1 cost
destlnatlon plath index
m 0 Al mE 210

cost
1] port cost path _
dynamically

/ N N L e

output port—{J If (10 + 0) < o
10
5

forwarding state
. . o [l 10 [AD]
B o [Al— stored in registers

periodically
advertise vectors



Seek and Push: Detecting Large Traffic Aggregates in the Dataplane

They present a data structure called Elastic Tire
that is able to detect: heavy hitters, traffic shifts
and superspreaders.

Hierarchical Heavy Hitter *Hk Threshold = 10

OO0

Heavy Hitter



Seek and Push: Detecting Large Traffic Aggregates in the Dataplane

High-level architecture:

1. Matching the flow using a dynamic LPM tree

2. Update Statistics

3. Control logic to update or report

PACKET

Report

(1) Flow Key
(Source IP)

W
m
Sta,, (H)HH

LPM Classification

Hierarchical Tree Structure

Control Logic

Main Memory
(Counters, Timestamps)




Generic External Memory for Switch Data Planes

DRAM

Programmable switches are flexible but only have a Prg\fg&??ﬁﬁg‘e f /+ TEEER
limited on-ship SRAM and TCAMS w/ SRAM cache AT S

= Lots of innovative applications!



Generic External Memory for Switch Data Planes

Switch Control Plane DRAM
IRDMA channel controllerl( ....... .. Action | Packet
Leverage RDMA to access remote memories at Switch Data Plane fction | Packet
.. | | : d CPU On-chip registers Action | Packet
minimal latency an usage T e T e T e A s

<—>» Memory access req./resp.

Incoming/outgoing packets <> RDMA initialization



Generic External Memory for Switch Data Planes

Packet buffer extension Extending Lookup Tables Extending State for network
monitoring

@ ~ =
= LG
VM| | VM >
mj LN
Remote  Customers' . . Remote
Customers' . = “es . =
bare-metal servers table server VMs =] - telemetry servers

Remote buffer servers
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