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P4-based
applications

P4 hardware
target

How do we build a fast  

reprogrammable switch?



Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



supporting Tbps of  

backplane throughput

How can we allow network programmability in the field, 

at reasonable cost, and without sacrificing speed



Let's look at a concrete design: 

Reconfigurable Match Tables (RMT)

[SIGCOMM'13]



Outline
• Conventional switch chips are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

2

The paper argues that flexibility does not come at 
the price of performance or cost



Outline
• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%
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Enter… 

Reconfigurable Match Tables (RMT)



What kind of switch architecture could support 

flexibility and yet run at Terabits per second?

Throughput 
aggregate

1 Tbps

Packet size 
average

1000 bits

# operations 
per packet (avg.)

10

Requirements 10 billion op./second



Pipelined architectures organize processing through a 

sequence of processing units and local memory
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For flexibility, 

each processing unit/memory can be made generic
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Each CPU can process distinct packets, with up to  
10 packets going through the pipeline simultaneously
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The RMT Abstract Model

• Parse graph
• Table graph

14

The runtime behavior of the parser & the match stages  
is defined through the RMT abstract model



How do we implement in hardware 

a programmable parser and a logical pipeline?



How do we implement in hardware 

a programmable parser and a logical pipeline?

[ANCS'13]



Parsing is the (complex) process of identifying and 

extracting the appropriate fields in a packet header

Throughput

Dependency

Incompleteness

Heterogeneity

Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Parsing involves sequential processing 

as headers typically point to the next one

Some headers do not even identify 

the subsequent header

Many header formats exist that  

can appear in various orders/locations



A parser can be divided into two separate blocks: 

header identification and field extraction

extracts the chosen fields  
 from identified headers

implements the parse graph's 
state machine

Source: Design Principles for Packet Parsers, Gibb et al.



stored in memory, 

e.g. in RAM and/or TCAM

In a programmable parser, the two modules rely on 

runtime information instead of hard-coded logic

stores the bit sequences 
that identify the headers 

stores the next state, 
the fields to extract, 
and any other data (if any)

Source: Design Principles for Packet Parsers, Gibb et al.



How do we implement in hardware 

a programmable parser and a logical pipeline?



A compiler translates a given RMT logical pipeline 

(specified in P4) into a physical one



The compiler maps each individual logical stage 

to one or more physical stage.



Our Switch Design

• 64 x 10Gb ports
– 960M packets/second
– 1GHz pipeline

• Programmable parser
• 32 Match/action stages

28

• Huge TCAM: 10x current chips
• 64K TCAM words x 640b

• SRAM hash tables for exact 
matches

• 128K words x 640b

• 224 action processors per stage
• All OpenFlow statistics counters

The RMT pipeline  

in a few statistics



Outline

• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do I do it: The RMT switch model
• Flexibility costs less than 15%
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Building a RMT pipeline is only 15% more expensive  
than building a fixed-function switching pipeline



Cost of Configurability:
Comparison with Conventional Switch

• Many functions identical:  I/O, data buffer, queueing…
• Make extra functions optional: statistics
• Memory dominates area

– Compare memory area/bit and bit count
• RMT must use memory bits efficiently to compete on cost
• Techniques for flexibility

– Match stage unit RAM configurability
– Ingress/egress resource sharing
– Table predication allows multiple tables per stage
– Match memory overhead reduction
– Match memory multi-word packing

30

The biggest cost is the memory… 

not the processing logic 



A small subset of our lab @ITET with two Tofino 3.2 Tbps, 32x 100 GbE QSFP28 

That was just an academic paper 

Let's look at a real flexible pipeline



Copyright  © 2017 - Barefoot Networks

Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

That was just an academic paper 

Let's look at a real flexible pipeline



Barefoot Tofino 6.5 Tbps backplane 

several billion packets per second at line rate

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Copyright  © 2017 - Barefoot Networks

Tofino. Simplified Block Diagram

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

pipe 0
Rx MACs

10/25/40/50/100
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Pipeline

Tx MAC
10/25/40/50/100

Control & configuration
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Clocks PCIe CPU MAC DMA 

engines

pipe 1
Rx MACs
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Pipeline

Tx MAC
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pipe 2
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
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pipe 3
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Ingress
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Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Barefoot Tofino 6.5 Tbps backplane 

several billion packets per second at line rate



Tofino relies on Packet Header Vector (PHV) to pass  

states between stages

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino uses a folded pipeline in which the same stages 

are used for both the ingress and the egress pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



What's next?  

Tofino 2: 12.8 Tbps (7 nm switching ASIC)

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/


This week on 

Advanced Topics in Communication Networks



P4-based
applications

P4 hardware
target

What cool things 
can we do with it?



PerformanceData plane  
programmability Monitoring

Applications offloading

for

Correctness

Platforms

Management

for Data plane 
programmability







Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015
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Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015





MARPLE [SIGCOMM'17]

SONATA [SIGCOMM'18]

Both papers enable operators to express monitoring queries

result = filter(pktstream, qid == Q and switch == S  

                 and t_out - t_in > 1ms)

returns a stream of packets experiencing high queuing latencies 

A compiler then compiles these queries to: switch programs +

control code

The two papers differ among others in the types of queries they support



LossRadar [CoNEXT'16]

FlowRadar [NSDI'16]

Develop techniques and tools to monitor all flows by

decoding them at the controller-level 

relying on in-switch data structures (Bloom Filters) and



DAPPER [SOSR'17]

Network-Wide HH [SOSR'18]

Develop P4-based detection mechanisms to

heavy-hitter (e.g. port scanners, superspreader, DDoS) 

diagnose TCP performance issue (e.g. small receiver buffers)



SketchLearn [SIGCOMM'18]

Elastic Sketch [SIGCOMM'18]

UnivMon [SIGCOMM'16]

Introduce techniques to make sketch-based monitoring 

more practical (by making sketches adaptive or "universal")



PerformanceData plane  
programmability Monitoring

Applications offloading

for

Correctness

Platforms

Management

for Data plane 
programmability



Consensus at network speed

+ NetCache [SOSP'17], NetChain [NSDI'18]

In-Network Aggregation  

(e.g., for MapReduce, graph analytics, ML)

Stateful layer-4 load balancers

[SOSR'15] [HotNets'17] [SIGCOMM'17]



Consensus at network speed In-Network Aggregation  

(e.g., for MapReduce, graph analytics, ML)

Stateful layer-4 load balancers

[SOSR'15] [HotNets'17] [SIGCOMM'17]

+ NetCache [SOSP'17], NetChain [NSDI'18]



NetCache: Balancing Key-Value Stores 
with Fast In-Network Caching

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé 
Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



NetCache is a rack-scale key-value store that leverages

workloads.

even under

in-network data plane caching to achieve

New generation of systems enabled by programmable switches J

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache solves the problem of load-balancing in  
key-values stores observing dynamic, skewed workload 



Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache solves the problem of load-balancing in  
key-values stores observing dynamic, skewed workload 



Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

It leverages that a small but very fast cache can provide 

perfect load-balancing… in theory



Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache relies on the O(billion) throughput of 

programmable network devices to achieve it in practice



Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

It relies on a tailored UDP-based protocol, an de/encoding 

scheme for storing variable length values, and sketches



q How to identify application-level packet fields ? 

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



NetCache Packet Format

q Application-layer protocol: compatible with existing L2-L4 layers

q Only the top of  rack switch needs to parse NetCache fields

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

read, write,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



q How to identify application-level packet fields ? 

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Key-value store using register array in network ASIC

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

action process_array(idx):
if pkt.op == read:
pkt.value     array[idx]

elif pkt.op == cache_update:
array[idx]    pkt.value

0 1 2 3

A B

Register Array

pkt.value: BA

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Variable-length key-value store in network ASIC?

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

0 1 2 3

A B

Register Array

pkt.value: BA

Key Challenges:

q No loop or string due to strict timing requirements

q Need to minimize hardware resources consumption
§ Number of  table entries

§ Size of  action data from each entry

§ Size of  intermediate metadata across tables

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Combine outputs from multiple arrays

Match pkt.key == A

Action bitmap = 111
index = 0

Match bitmap[0] == 1

Action process_array_0 (index )

0 1 2 3

A0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index )

Match bitmap[2] == 1

Action process_array_2 (index )

Value Table 1

Value Table 2

A1

A2

pkt.value: A0 A1 A2

Bitmap indicates arrays that store the key’s value

Index indicates slots in the arrays to get the value

Minimal hardware resource overhead

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Match pkt.key == A pkt.key == B

Action bitmap = 111
index = 0

bitmap = 110
index = 1

Match bitmap[0] == 1

Action process_array_0 (index )

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index )

Match bitmap[2] == 1

Action process_array_2 (index )

Value Table 1

Value Table 2

A1 B1

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Match pkt.key == A pkt.key == B pkt.key == C

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

Match bitmap[0] == 1

Action process_array_0 (index )

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index )

Match bitmap[2] == 1

Action process_array_2 (index )

Value Table 1

Value Table 2

A1 B1 C0

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Match pkt.key == A pkt.key == B pkt.key == C pkt.key == D

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

bitmap = 101
index = 2

Match bitmap[0] == 1

Action process_array_0 (index )

0 1 2 3

A0 B0 D0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index )

Match bitmap[2] == 1

Action process_array_2 (index )

Value Table 1

Value Table 2

A1 B1 C0

A2 D1

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0 D0 D1

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



q How to identify application-level packet fields ? 

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Cache insertion and eviction

q Challenge: cache the hottest O(N log N) items with limited insertion rate

q Goal: react quickly and effectively to workload changes with minimal updates

Key-Value 
Cache

Query 
Statistics

Cache Management

P
C
Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of  
new hot and sampled cached keys 

3 Control plane fetches values for 
keys to be inserted to the cache

4 Control plane inserts and evicts keys

Storage ServersTor Switch

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



Query statistics in the data plane

q Cached key: per-key counter array

q Uncached key

§ Count-Min sketch: report new hot keys

§ Bloom filter: remove duplicated hot key reports

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

Cache
Lookup

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017



PerformanceData plane  
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane 
programmability

Applications offloading



"Data-plane" programmability goes beyond  
switch programmability (or P4 for that matter) 



host networking

[NSDI'18] [HotNets'17]

congestion control

… to FPGA-based SmartNICSOffloading…

NetFPGA SUME board



Host-based programmability + SmartNICs + 

programmable switches = fully programmable platforms

IEEE International Conference on  
High Performance Switching and Routing, 2018

Big question is

How to combine them best?



PerformanceData plane  
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane 
programmability

Applications offloading



So you've a programmable networks… 

How do you make sure that it works as it should?!

[SIGCOMM'18]

[SIGCOMM'18]

[CoNEXT'18]



So you've a programmable networks… 

How do you make sure that it works as it should?!

[SIGCOMM'18]

[SIGCOMM'18]

[CoNEXT'18]



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018



PerformanceData plane  
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane 
programmability

Applications offloading



So you've a verified programmable networks… 

How do you manage it?!

How do you run multiple applications in your switches?

monitoring, forwarding, load-balancing, etc.

How do you perform planned maintenance?

now that you've state in your switches…

How do you share resources amongst applications?

especially memory and # packet operations



We need an Operating System for the data plane

Definition An operating system is a system software that 

manages computer hardware and software resources 

and provides common services for computer programs.

Wikipedia

Do we have that? Nope. Not yet at least.



[SOSR'17]

We're working on it…



Source: Swing State: Consistent Updates for Stateful and Programmable Data Planes 

Luo et al., SOSR 2017



Group projectLectures/Exercices

~7 weeks
how to program in P4

>= 7 weeks
in teams of 3

Advanced Topics in Communication Networks



Group projectLectures/Exercices

~7 weeks
how to program in P4

Advanced Topics in Communication Networks

>= 7 weeks
in teams of 3



The group project starts next week 

It accounts for 50% of your final grade



The evaluation of your project will depend on  

your implementation, report, and presentation
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implementation
70%

achieves the basic goals

is properly documented

runs + results can be reproduced



The evaluation of your project will depend on  

your implementation, report, and presentation

implementation
70%

achieves the basic goals

is properly documented

runs + results can be reproduced

You'll have to write
a detailed README (in Markdown)
We'll provide you with a template



runs + results can be reproduced

The evaluation of your project will depend on  

your implementation, report, and presentation

implementation

report

70%

15%, 10 pages max

achieves the basic goals

is properly documented

describes the main building blocks

describes what each group member did
evaluates the solution



The evaluation of your project will depend on  

your implementation, report, and presentation

report

presentation

15%, 10 pages max

15%, 10 min. +questions

describes the main building blocks

describes what each group member did

summarizes the problem and the solution
contains a live demo

involves all group members

evaluates the solution

runs + results can be reproduced

implementation
70%

achieves the basic goals

is properly documented



The final deadline for the project is 
Wed Dec 16 at 23.59pm

This week Select a proposal from the list (adv-net.ethz.ch)

or send us your own proposal by email

Every week Meet with the responsible assistant
schedule a recurring slot in [10.15am; noon]

Mon Dec 16 
11.59pm

Send us an archive with report, code, slides

Tue Dec 17 
1.15pm—

Groups presentation + course/exam debrief

attendance is mandatory



The project has to be done in groups of 3 students 

"Matching" process for incomplete groups via Slack

Project grade is shared by each group member 

provided that each collaborated (roughly equally)

Let us know in advance if that's not the case

Briefly describe in the report the contribution  
of each group member

Each group member should be involved in  
the presentation and be able to answer questions



lvanbever@ethz.ch, cedgar@ethz.ch

If you want to propose your own project, 

send us an email describing it by Thu Oct 31 11.59am

mailto:lvanbever@ethz.ch


Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria
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Proposal #1 
SDNSec: Forwarding Accountability for SDN Data Plane

Current data plane lacks 
accountability:

Validating that policies have 
not been violated

Consistency guarantees 
under reconfiguration

[ICCCN 2016] NEC Corporation Japan, ETH Zurich (Perrig et. al.) 

Enforcing forwarding 
policies



With SDNSec:

Proposal #1 
SDNSec: Forwarding Accountability for SDN Data Plane

Ingress-switch adds path in 
header

Core-switches extract header, 
decrypt and forward

Controller verifies policy

[ICCCN 2016] NEC Corporation Japan, ETH Zurich (Perrig et. al.) 



Proposal #2 
Herding the Elephants: Detecting Network-Wide 
Heavy Hitters with Limited Resources

Separating elephant from mice is 
key in network management:

Sampling is not accurate 
and results are delayed

App-specific sketches limit 
network visibility

[Semantic scholar] Princeton, Walter Robert J. Harrison (Rexford et. al.) 



Proposal #2 
Herding the Elephants: Detecting Network-Wide 
Heavy Hitters with Limited Resources

Herd provides accuracy 
network wide

Switches allocate resources 
based on flow type

Switches notify controller 
when local heavy hitter

Controller finds global 
heavy hitters

[Semantic scholar] Princeton, Walter Robert J. Harrison (Rexford et. al.) 

Extension: Network-Wide Heavy Hitter 
Detection with Commodity Switches



Network nodes could cheat in 
monitoring

Performing better for 
selected samples

Delayed disclosure mechanism 
prevents it

Estimates loss-rate and 
delay from controller

Proposal #3 
Retroactive Packet Sampling for Tra"c Receipts

[SIGMETRICS 2019] EPFL Lausanne, ETH Zurich (Perrig et. al.) 

Extension: SQR: In-Network  
Packet Loss Recovery



Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria



Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19

TCP retransmits 
over time

Failure

TCP flows

primary

backup #2

backup #1



TCP retransmits 
over time

Failure

TCP flows

primary

backup #2

backup #1

Goal: improving blink

1. Selecting flows with low RTTs

2. Monitoring backup next-hops 
continuously to reroute faster

3. Monitoring the throughput 
to improve accuracy

Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19



NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17

Traditional way to implement a key value store:

flash/disk

O(100) KQPS

in-memory

O(10) MQPS

cache

(for 2 students only)



NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17

Traditional way to implement a key value store:

flash/disk

O(100) KQPS

in-memory

O(10) MQPS

cache

NetCache:

in-network

cachein-memory

O(10) MQPS O(1) BQPS

(for 2 students only)



NetChain: Scale-Free sub-RTT Coordination
NSDI’18

Coordination servers 
running a consensus protocol

Traditionally, key-value stores are 
replicated for fault-tolerance

request replay

(for 2 students only)



NetChain: Scale-Free sub-RTT Coordination
NSDI’18

Coordination servers 
running a consensus protocol

NetChain 

Coordination switches 
running a consensus protocol

request replay request replay

(for 2 students only)

Traditionally, key-value stores are 
replicated for fault-tolerance



Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria



NetHide: Secure and Practical  
Network Topology Obfuscation

1

X

Y

If I receive a packet to X with TTL = i,  
I should send it to Y with TTL = j



pForest: In-Network Inference  
with Random Forests

2

Pa
rs

er

Features Random forest model Action based on  
label & certainty

D
ep

ar
se

r

a>10

b>20

c>50

d>10

e>20

f>20

g>20

drop()

fwd(2)



iTAP

?
?

?
? ??
?

? ?
?

??
??

?
?
?

iTAP: In-Network Traffic Analysis Prevention  
Using Software-Defined Networks 

3



Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria



Proposal #4 
Fast String Searching on PISA

P4 is very limited, e.g. it cannot work with strings. 
Or can it? It can even handle regular expressions!

[SOSR 2019] USI, Barefoot (Jepsen et. al.) 

In the control-plane: 
Translate regex 
to automaton.

In the data-plane: 
Execute automaton 
using recirculation.

Evaluation: 
Compare to grep 
and co.

$ grep P4 \ 
   lecture.txt 



Proposal #5
SilkRoad: Making Stateful Layer-4 Load Balancing
Fast and Cheap Using Switching ASICs
SilkRoad using a P4 switch to replace software load balancers. 
It can handle millions of stateful connections using multi-level caching.

[SIGCOMM 2017] USC, Yale, Facebook, Barefoot (Miao et. al.) 

In the control-plane: 
Accept incoming 
connections.

Evaluation: 
Test performance at 
large scale.

In the data-plane: 
Keep track of 
existing connections.



Proposal #6 
A Distributed Algorithm to Calculate
Max-Min Fair Rates Without Per-Flow State
s-Perc is a congestion control algorithm that proactively assigns 
per-flow sending rates without per-flow state on devices.

[SIGMETRICS 2019] Stanford University, MIT CSAIL (Jose et. al.) 

In the control-plane: 
Implement the  
s-Perc algorithm.

In the data-plane: 
Create and parse 
control messages.

Evaluation: 
Compare with TCP 
and other protocols.



Proposal #7 
Millions of Little Minions: Using Packets for
Low Latency Network Programming and Visibility

In active networks, packets carry programs, which are run by switches.

[SIGCOMM 2014] Stanford University, Cisco, Barefoot (Jeyakumar et. al.) 

In the control-plane: 
Compile and start 
packet programs.

Evaluation: 
Test the performance 
of packet programs.

In the data-plane: 
Parse packets and 
execute instructions.



Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria



DIBS: Just-in-time congestion mitigation for Data Centers 

[Eurosys 2016] University of Southern California Microsoft Research 

currently
DC patterns can cause 
congestion. 
Switches drop packets they 
cannot buffer. 

with DIBS
 detours to neighboring 
switches.
minimizes drops, which speeds 
up job completion time. 

Maria Apostolaki




Marple: Language-Directed Hardware Design for Network 
Performance Monitoring

The operator writes a query in a 
domain-specific language called 
Marple.

The query is compiled into a 
switch program that runs on the 
network's programmable switches, 
augmented with new switch 
hardware primitives that we design 
in service of Marple.

The switches stream results out to 
collection servers, where the 
operator can retrieve query 
results.

[SIGCOMM 2017] Narayana1 et al. 

Maria Apostolaki




007: Democratically Finding the Cause of Packet Drops

Need to detect short-lived & concurrent failures despite noise
007 scales by uses traceroute to find paths of flows that had packet drops
007 finds faulty links democratically democracy by letting hosts vote

Implementation with p4 switches. 
detect retransmissions in switches
issue traceroutes directly from data plane
combine traceroutes in control plane



Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria



Hardware-Accelerated Network Control Planes

Modern programmable devices can perform small  
computations on billions of small packets per 

second.

[HotNets 2018] ETH, (Molero et. al.) 
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This paper shows how to leverage that to run  
control plane algorithms directly in the data 

plane



Seek and Push: Detecting Large Tra"c Aggregates in the Dataplane

They present a data structure called Elastic Tire 
that is able to detect: heavy hitters, traffic shifts 

and superspreaders. 

[arXiv 2018] CESNET, Cambridge (Kučera et. al.) 



Seek and Push: Detecting Large Tra"c Aggregates in the Dataplane

They present a data structure called Elastic Tire 
that is able to detect: heavy hitters, traffic shifts 

and superspreaders. 

High-level architecture:  
    1. Matching the flow using a dynamic LPM tree  
    2. Update Statistics 
    3. Control logic to update or report

[arXiv 2018] CESNET, Cambridge (Kučera et. al.) 



Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.) 

Programmable switches are flexible but only have a 

limited on-ship SRAM and TCAMS



Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.) 

Programmable switches are flexible but only have a 

limited on-ship SRAM and TCAMS

Leverage RDMA to access remote memories at 
minimal latency and CPU usage



Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.) 

Packet buffer extension  Extending Lookup Tables Extending State for network  
monitoring 
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