
Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 29 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Last week on

Advanced Topics in Communication Networks

P4-based
applications

P4 hardware
target

How do we build a fast

reprogrammable switch?

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

supporting Tbps of

backplane throughput

How can we allow network programmability in the field,

at reasonable cost, and without sacrificing speed

Let's look at a concrete design:

Reconfigurable Match Tables (RMT)

[SIGCOMM'13]

Outline
• Conventional switch chips are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

2

The paper argues that flexibility does not come at 
the price of performance or cost

Outline
• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

13

Enter…

Reconfigurable Match Tables (RMT)

What kind of switch architecture could support

flexibility and yet run at Terabits per second?

Throughput
aggregate

1 Tbps

Packet size
average

1000 bits

operations
per packet (avg.)

10

Requirements 10 billion op./second

Pipelined architectures organize processing through a

sequence of processing units and local memory

switching

switching

table

routing ACL tunnel

routing

table

ACL

table

tunnel

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

For flexibility,

each processing unit/memory can be made generic

CPU

lookup

table

CPU CPU CPU

lookup

table

lookup

table

lookup

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

Each CPU can process distinct packets, with up to  
10 packets going through the pipeline simultaneously

CPU

lookup

table

CPU CPU CPU

lookup

table

lookup

table

lookup

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

p1p2p3p4p5
pN

The RMT Abstract Model

• Parse graph
• Table graph

14

The runtime behavior of the parser & the match stages  
is defined through the RMT abstract model

How do we implement in hardware

a programmable parser and a logical pipeline?

How do we implement in hardware

a programmable parser and a logical pipeline?

[ANCS'13]

Parsing is the (complex) process of identifying and

extracting the appropriate fields in a packet header

Throughput

Dependency

Incompleteness

Heterogeneity

Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Parsing involves sequential processing

as headers typically point to the next one

Some headers do not even identify

the subsequent header

Many header formats exist that

can appear in various orders/locations

A parser can be divided into two separate blocks:

header identification and field extraction

extracts the chosen fields
 from identified headers

implements the parse graph's
state machine

Source: Design Principles for Packet Parsers, Gibb et al.

stored in memory,

e.g. in RAM and/or TCAM

In a programmable parser, the two modules rely on

runtime information instead of hard-coded logic

stores the bit sequences
that identify the headers

stores the next state,
the fields to extract,
and any other data (if any)

Source: Design Principles for Packet Parsers, Gibb et al.

How do we implement in hardware

a programmable parser and a logical pipeline?

A compiler translates a given RMT logical pipeline

(specified in P4) into a physical one

The compiler maps each individual logical stage

to one or more physical stage.

Our Switch Design

• 64 x 10Gb ports
– 960M packets/second
– 1GHz pipeline

• Programmable parser
• 32 Match/action stages

28

• Huge TCAM: 10x current chips
• 64K TCAM words x 640b

• SRAM hash tables for exact
matches

• 128K words x 640b

• 224 action processors per stage
• All OpenFlow statistics counters

The RMT pipeline

in a few statistics

Outline

• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do I do it: The RMT switch model
• Flexibility costs less than 15%

29

Building a RMT pipeline is only 15% more expensive  
than building a fixed-function switching pipeline

Cost of Configurability:
Comparison with Conventional Switch

• Many functions identical: I/O, data buffer, queueing…
• Make extra functions optional: statistics
• Memory dominates area

– Compare memory area/bit and bit count
• RMT must use memory bits efficiently to compete on cost
• Techniques for flexibility

– Match stage unit RAM configurability
– Ingress/egress resource sharing
– Table predication allows multiple tables per stage
– Match memory overhead reduction
– Match memory multi-word packing

30

The biggest cost is the memory…

not the processing logic

A small subset of our lab @ITET with two Tofino 3.2 Tbps, 32x 100 GbE QSFP28

That was just an academic paper

Let's look at a real flexible pipeline

Copyright © 2017 - Barefoot Networks

Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

That was just an academic paper

Let's look at a real flexible pipeline

Barefoot Tofino 6.5 Tbps backplane

several billion packets per second at line rate

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

Tofino. Simplified Block Diagram

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

pipe 0
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

Control & configuration

Reset /
Clocks PCIe CPU MAC DMA

engines

pipe 1
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 2
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 3

Rx MACs
10/25/40/50/100

Ingress
Pipeline

Tx MAC
10/25/40/50/100

Traffic
Manager

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Barefoot Tofino 6.5 Tbps backplane

several billion packets per second at line rate

Tofino relies on Packet Header Vector (PHV) to pass

states between stages

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Tofino uses a folded pipeline in which the same stages

are used for both the ingress and the egress pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

What's next?

Tofino 2: 12.8 Tbps (7 nm switching ASIC)

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

This week on

Advanced Topics in Communication Networks

P4-based
applications

P4 hardware
target

What cool things
can we do with it?

PerformanceData plane
programmability Monitoring

Applications offloading

for

Correctness

Platforms

Management

for Data plane
programmability

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

Source: In-band Network Telemetry, Mukesh Hira and Naga Katta, 2015

MARPLE [SIGCOMM'17]

SONATA [SIGCOMM'18]

Both papers enable operators to express monitoring queries

result = filter(pktstream, qid == Q and switch == S

 and t_out - t_in > 1ms)

returns a stream of packets experiencing high queuing latencies

A compiler then compiles these queries to: switch programs +

control code

The two papers differ among others in the types of queries they support

LossRadar [CoNEXT'16]

FlowRadar [NSDI'16]

Develop techniques and tools to monitor all flows by

decoding them at the controller-level

relying on in-switch data structures (Bloom Filters) and

DAPPER [SOSR'17]

Network-Wide HH [SOSR'18]

Develop P4-based detection mechanisms to

heavy-hitter (e.g. port scanners, superspreader, DDoS)

diagnose TCP performance issue (e.g. small receiver buffers)

SketchLearn [SIGCOMM'18]

Elastic Sketch [SIGCOMM'18]

UnivMon [SIGCOMM'16]

Introduce techniques to make sketch-based monitoring

more practical (by making sketches adaptive or "universal")

PerformanceData plane
programmability Monitoring

Applications offloading

for

Correctness

Platforms

Management

for Data plane
programmability

Consensus at network speed

+ NetCache [SOSP'17], NetChain [NSDI'18]

In-Network Aggregation

(e.g., for MapReduce, graph analytics, ML)

Stateful layer-4 load balancers

[SOSR'15] [HotNets'17] [SIGCOMM'17]

Consensus at network speed In-Network Aggregation

(e.g., for MapReduce, graph analytics, ML)

Stateful layer-4 load balancers

[SOSR'15] [HotNets'17] [SIGCOMM'17]

+ NetCache [SOSP'17], NetChain [NSDI'18]

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé
Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache is a rack-scale key-value store that leverages

workloads.

even under

in-network data plane caching to achieve

New generation of systems enabled by programmable switches J

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache solves the problem of load-balancing in  
key-values stores observing dynamic, skewed workload

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache solves the problem of load-balancing in  
key-values stores observing dynamic, skewed workload

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

It leverages that a small but very fast cache can provide

perfect load-balancing… in theory

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache relies on the O(billion) throughput of

programmable network devices to achieve it in practice

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

It relies on a tailored UDP-based protocol, an de/encoding

scheme for storing variable length values, and sketches

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

NetCache Packet Format

q Application-layer protocol: compatible with existing L2-L4 layers

q Only the top of rack switch needs to parse NetCache fields

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

read, write,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Key-value store using register array in network ASIC

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

action process_array(idx):
if pkt.op == read:
pkt.value array[idx]

elif pkt.op == cache_update:
array[idx] pkt.value

0 1 2 3

A B

Register Array

pkt.value: BA

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Variable-length key-value store in network ASIC?

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

0 1 2 3

A B

Register Array

pkt.value: BA

Key Challenges:

q No loop or string due to strict timing requirements

q Need to minimize hardware resources consumption
§ Number of table entries

§ Size of action data from each entry

§ Size of intermediate metadata across tables

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Combine outputs from multiple arrays

Match pkt.key == A

Action bitmap = 111
index = 0

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1

A2

pkt.value: A0 A1 A2

Bitmap indicates arrays that store the key’s value

Index indicates slots in the arrays to get the value

Minimal hardware resource overhead

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Match pkt.key == A pkt.key == B

Action bitmap = 111
index = 0

bitmap = 110
index = 1

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Match pkt.key == A pkt.key == B pkt.key == C

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1 C0

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Match pkt.key == A pkt.key == B pkt.key == C pkt.key == D

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

bitmap = 101
index = 2

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 D0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1 C0

A2 D1

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0 D0 D1

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Cache insertion and eviction

q Challenge: cache the hottest O(N log N) items with limited insertion rate

q Goal: react quickly and effectively to workload changes with minimal updates

Key-Value
Cache

Query
Statistics

Cache Management

P
C
Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of
new hot and sampled cached keys

3 Control plane fetches values for
keys to be inserted to the cache

4 Control plane inserts and evicts keys

Storage ServersTor Switch

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

Query statistics in the data plane

q Cached key: per-key counter array

q Uncached key

§ Count-Min sketch: report new hot keys

§ Bloom filter: remove duplicated hot key reports

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

Cache
Lookup

Source: NetCache: Balancing Key-Value Stores with Fast In-Network Caching, Xin Jin, 2017

PerformanceData plane
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane
programmability

Applications offloading

"Data-plane" programmability goes beyond  
switch programmability (or P4 for that matter)

host networking

[NSDI'18] [HotNets'17]

congestion control

… to FPGA-based SmartNICSOffloading…

NetFPGA SUME board

Host-based programmability + SmartNICs +

programmable switches = fully programmable platforms

IEEE International Conference on
High Performance Switching and Routing, 2018

Big question is

How to combine them best?

PerformanceData plane
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane
programmability

Applications offloading

So you've a programmable networks…

How do you make sure that it works as it should?!

[SIGCOMM'18]

[SIGCOMM'18]

[CoNEXT'18]

So you've a programmable networks…

How do you make sure that it works as it should?!

[SIGCOMM'18]

[SIGCOMM'18]

[CoNEXT'18]

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

Source: p4v, Practical Verification for Programmable Data Planes, Liu et al., 2018

PerformanceData plane
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane
programmability

Applications offloading

So you've a verified programmable networks…

How do you manage it?!

How do you run multiple applications in your switches?

monitoring, forwarding, load-balancing, etc.

How do you perform planned maintenance?

now that you've state in your switches…

How do you share resources amongst applications?

especially memory and # packet operations

We need an Operating System for the data plane

Definition An operating system is a system software that

manages computer hardware and software resources

and provides common services for computer programs.

Wikipedia

Do we have that? Nope. Not yet at least.

[SOSR'17]

We're working on it…

Source: Swing State: Consistent Updates for Stateful and Programmable Data Planes

Luo et al., SOSR 2017

Group projectLectures/Exercices

~7 weeks
how to program in P4

>= 7 weeks
in teams of 3

Advanced Topics in Communication Networks

Group projectLectures/Exercices

~7 weeks
how to program in P4

Advanced Topics in Communication Networks

>= 7 weeks
in teams of 3

The group project starts next week

It accounts for 50% of your final grade

The evaluation of your project will depend on

your implementation, report, and presentation

The evaluation of your project will depend on

your implementation, report, and presentation

implementation
70%

achieves the basic goals

is properly documented

runs + results can be reproduced

The evaluation of your project will depend on

your implementation, report, and presentation

implementation
70%

achieves the basic goals

is properly documented

runs + results can be reproduced

You'll have to write
a detailed README (in Markdown)
We'll provide you with a template

runs + results can be reproduced

The evaluation of your project will depend on

your implementation, report, and presentation

implementation

report

70%

15%, 10 pages max

achieves the basic goals

is properly documented

describes the main building blocks

describes what each group member did
evaluates the solution

The evaluation of your project will depend on

your implementation, report, and presentation

report

presentation

15%, 10 pages max

15%, 10 min. +questions

describes the main building blocks

describes what each group member did

summarizes the problem and the solution
contains a live demo

involves all group members

evaluates the solution

runs + results can be reproduced

implementation
70%

achieves the basic goals

is properly documented

The final deadline for the project is 
Wed Dec 16 at 23.59pm

This week Select a proposal from the list (adv-net.ethz.ch)

or send us your own proposal by email

Every week Meet with the responsible assistant
schedule a recurring slot in [10.15am; noon]

Mon Dec 16
11.59pm

Send us an archive with report, code, slides

Tue Dec 17
1.15pm—

Groups presentation + course/exam debrief

attendance is mandatory

The project has to be done in groups of 3 students

"Matching" process for incomplete groups via Slack

Project grade is shared by each group member

provided that each collaborated (roughly equally)

Let us know in advance if that's not the case

Briefly describe in the report the contribution  
of each group member

Each group member should be involved in  
the presentation and be able to answer questions

lvanbever@ethz.ch, cedgar@ethz.ch

If you want to propose your own project,

send us an email describing it by Thu Oct 31 11.59am

mailto:lvanbever@ethz.ch

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

Proposal #1 
SDNSec: Forwarding Accountability for SDN Data Plane

Current data plane lacks
accountability:

Validating that policies have
not been violated

Consistency guarantees
under reconfiguration

[ICCCN 2016] NEC Corporation Japan, ETH Zurich (Perrig et. al.)

Enforcing forwarding
policies

With SDNSec:

Proposal #1 
SDNSec: Forwarding Accountability for SDN Data Plane

Ingress-switch adds path in
header

Core-switches extract header,
decrypt and forward

Controller verifies policy

[ICCCN 2016] NEC Corporation Japan, ETH Zurich (Perrig et. al.)

Proposal #2 
Herding the Elephants: Detecting Network-Wide
Heavy Hitters with Limited Resources

Separating elephant from mice is
key in network management:

Sampling is not accurate
and results are delayed

App-specific sketches limit
network visibility

[Semantic scholar] Princeton, Walter Robert J. Harrison (Rexford et. al.)

Proposal #2 
Herding the Elephants: Detecting Network-Wide
Heavy Hitters with Limited Resources

Herd provides accuracy
network wide

Switches allocate resources
based on flow type

Switches notify controller
when local heavy hitter

Controller finds global
heavy hitters

[Semantic scholar] Princeton, Walter Robert J. Harrison (Rexford et. al.)

Extension: Network-Wide Heavy Hitter
Detection with Commodity Switches

Network nodes could cheat in
monitoring

Performing better for
selected samples

Delayed disclosure mechanism
prevents it

Estimates loss-rate and
delay from controller

Proposal #3 
Retroactive Packet Sampling for Tra"c Receipts

[SIGMETRICS 2019] EPFL Lausanne, ETH Zurich (Perrig et. al.)

Extension: SQR: In-Network
Packet Loss Recovery

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19

TCP retransmits
over time

Failure

TCP flows

primary

backup #2

backup #1

TCP retransmits
over time

Failure

TCP flows

primary

backup #2

backup #1

Goal: improving blink

1. Selecting flows with low RTTs

2. Monitoring backup next-hops
continuously to reroute faster

3. Monitoring the throughput
to improve accuracy

Blink: Fast Connectivity Recovery Entirely in the Data Plane
NSDI’19

NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17

Traditional way to implement a key value store:

flash/disk

O(100) KQPS

in-memory

O(10) MQPS

cache

(for 2 students only)

NetCache: Balancing Key-Value Stores with Fast In-Network Caching
SOSP’17

Traditional way to implement a key value store:

flash/disk

O(100) KQPS

in-memory

O(10) MQPS

cache

NetCache:

in-network

cachein-memory

O(10) MQPS O(1) BQPS

(for 2 students only)

NetChain: Scale-Free sub-RTT Coordination
NSDI’18

Coordination servers
running a consensus protocol

Traditionally, key-value stores are
replicated for fault-tolerance

request replay

(for 2 students only)

NetChain: Scale-Free sub-RTT Coordination
NSDI’18

Coordination servers
running a consensus protocol

NetChain

Coordination switches
running a consensus protocol

request replay request replay

(for 2 students only)

Traditionally, key-value stores are
replicated for fault-tolerance

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

NetHide: Secure and Practical  
Network Topology Obfuscation

1

X

Y

If I receive a packet to X with TTL = i,  
I should send it to Y with TTL = j

pForest: In-Network Inference  
with Random Forests

2

Pa
rs

er

Features Random forest model Action based on  
label & certainty

D
ep

ar
se

r

a>10

b>20

c>50

d>10

e>20

f>20

g>20

drop()

fwd(2)

iTAP

?
?

?
? ??
?

? ?
?

??
??

?
?
?

iTAP: In-Network Traffic Analysis Prevention  
Using Software-Defined Networks

3

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

Proposal #4 
Fast String Searching on PISA

P4 is very limited, e.g. it cannot work with strings.
Or can it? It can even handle regular expressions!

[SOSR 2019] USI, Barefoot (Jepsen et. al.)

In the control-plane:
Translate regex
to automaton.

In the data-plane:
Execute automaton
using recirculation.

Evaluation:
Compare to grep
and co.

$ grep P4 \
 lecture.txt

Proposal #5
SilkRoad: Making Stateful Layer-4 Load Balancing
Fast and Cheap Using Switching ASICs
SilkRoad using a P4 switch to replace software load balancers.
It can handle millions of stateful connections using multi-level caching.

[SIGCOMM 2017] USC, Yale, Facebook, Barefoot (Miao et. al.)

In the control-plane:
Accept incoming
connections.

Evaluation:
Test performance at
large scale.

In the data-plane:
Keep track of
existing connections.

Proposal #6 
A Distributed Algorithm to Calculate
Max-Min Fair Rates Without Per-Flow State
s-Perc is a congestion control algorithm that proactively assigns
per-flow sending rates without per-flow state on devices.

[SIGMETRICS 2019] Stanford University, MIT CSAIL (Jose et. al.)

In the control-plane:
Implement the  
s-Perc algorithm.

In the data-plane:
Create and parse
control messages.

Evaluation:
Compare with TCP
and other protocols.

Proposal #7 
Millions of Little Minions: Using Packets for
Low Latency Network Programming and Visibility

In active networks, packets carry programs, which are run by switches.

[SIGCOMM 2014] Stanford University, Cisco, Barefoot (Jeyakumar et. al.)

In the control-plane:
Compile and start
packet programs.

Evaluation:
Test the performance
of packet programs.

In the data-plane:
Parse packets and
execute instructions.

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

DIBS: Just-in-time congestion mitigation for Data Centers

[Eurosys 2016] University of Southern California Microsoft Research

currently
DC patterns can cause
congestion.
Switches drop packets they
cannot buffer.

with DIBS
 detours to neighboring
switches.
minimizes drops, which speeds
up job completion time.

Maria Apostolaki

Marple: Language-Directed Hardware Design for Network
Performance Monitoring

The operator writes a query in a
domain-specific language called
Marple.

The query is compiled into a
switch program that runs on the
network's programmable switches,
augmented with new switch
hardware primitives that we design
in service of Marple.

The switches stream results out to
collection servers, where the
operator can retrieve query
results.

[SIGCOMM 2017] Narayana1 et al.

Maria Apostolaki

007: Democratically Finding the Cause of Packet Drops

Need to detect short-lived & concurrent failures despite noise
007 scales by uses traceroute to find paths of flows that had packet drops
007 finds faulty links democratically democracy by letting hosts vote

Implementation with p4 switches.
detect retransmissions in switches
issue traceroutes directly from data plane
combine traceroutes in control plane

Quick overview of the proposals

AlexanderRoland EdgarAlbert Thomas Maria

Hardware-Accelerated Network Control Planes

Modern programmable devices can perform small  
computations on billions of small packets per

second.

[HotNets 2018] ETH, (Molero et. al.)

B C DA
1

0output port

prefix-to-  
index

link cost

A
…
50

11

10

C
10
1

1

destination path

0 [A]

cost

0 [A]

periodically 
advertise vectors

port cost path

50 -1 ∞ Ø

forwarding state

stored in registers

dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

This paper shows how to leverage that to run  
control plane algorithms directly in the data

plane

Seek and Push: Detecting Large Tra"c Aggregates in the Dataplane

They present a data structure called Elastic Tire
that is able to detect: heavy hitters, traffic shifts

and superspreaders.

[arXiv 2018] CESNET, Cambridge (Kučera et. al.)

Seek and Push: Detecting Large Tra"c Aggregates in the Dataplane

They present a data structure called Elastic Tire
that is able to detect: heavy hitters, traffic shifts

and superspreaders.

High-level architecture:  
 1. Matching the flow using a dynamic LPM tree  
 2. Update Statistics 
 3. Control logic to update or report

[arXiv 2018] CESNET, Cambridge (Kučera et. al.)

Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.)

Programmable switches are flexible but only have a

limited on-ship SRAM and TCAMS

Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.)

Programmable switches are flexible but only have a

limited on-ship SRAM and TCAMS

Leverage RDMA to access remote memories at
minimal latency and CPU usage

Generic External Memory for Switch Data Planes
[HotNets 2018] CMU, Microsoft, Barefoot Networks (Kim et. al.)

Packet buffer extension Extending Lookup Tables Extending State for network  
monitoring

Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 29 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

