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answering specific questions approximately
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A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X'in the stream?
What iS N the Stream?lnvertible Bloom Filter



A bloom filter is a streaming algorithm

answering specific questions approximately.

Is X In the stream?
What iS in the Stream?lnvertible Bloom Filter

What about other questions?



Is a certain flow in the stream?
Bloom Filter

What flows are in the stream?
Invertible Bloom Filter, HyperLoglLog Sketch, ...

How frequently does an flow appear?
Count Sketch, CountMin Sketch, ...

What are the most frequent elements?
Count/CountMin + Heap, ...

How many flows belong to a certain subnet?
Sketchl.earn S'Gcomm ‘18
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In the worst case, an algorithm providing

exact frequencies requires linear space.

'\

.

Data Stream

h elements in total

- n distinct elements
(In the worst case)

- n counters required? :(

18



Probabilistic datastructures can help again!

Bloom Filters Sketches

Save space by allowing Save space by allowing

false positives. mis-counting.



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.
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relative to L1 norm

Pr| x. — x. =¢l|x|, |9

i i
estimated true sum of
frequency  frequency  frequencies

The estimation error exceeds ¢||x||,

with a probability smaller than 6



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.
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A CountMin Sketch uses multiple arrays and hashes.

counters > } windices
\\: per array
(range of hashes)
y
< 6 o]
darrays w-d counters

(one hash function per array ) (total size)



A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have

provable L1 error bounds for frequency queries.

CountMin sketch recipe

|

Then X, — x.=> ¢||x||, with a probability less than 6
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A CountMin sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L1 error bounds for frequency queries.

- only one design out of many!



A Count sketch uses the same principles as a
counting bloom filter, but is designed to have
provable L2 error bounds for frequency queries.



The Count sketch uses additional hashing to
give L2 error bounds, but requires more resources.

CountMin sketch recipe

lng—
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Then  x,— x,= ¢||x||, with a probability less than 6

Count sketch recipe
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Sketches are the new black

...and many more!

SketchlLearn
SIGCOMM ‘18

UnivMon
SIGCOMM ‘16

OpenSketch
NSDI ‘13

[source] [source]

[source]

One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference

Software Defined Traffic Measurement with OpenSketch Qun Huang’, Patrick P. C. Leef, and Yungang Bao®
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Abstract

Most network management tasks in software-defined
networks (SDN) involve two stages: and

work management, it is important to design and build
defined The

control. While many efforts have been focused on net-
work control APIs for SDN, little attention goes into
measurement. The key challenge of designing a new
measurement APT is to strike a careful balance between
generality (supporting a wide variety of measurement
tasks) and efficiency (enabling high link speed and low
cost). We propose a software defined traffic measure-
ment architecture OpenSketch, which separates the mea-
surement data plane from the control plane. In the
data plane, OpenSketch provides a simple three-stage
pipeline (hashing, filtering, and counting), which can be
i with ity switch and
support many measurement tasks. In the control plane,
OpenSketch provides a measurement library that auto-
matically configures the pipeline and allocates resources
for different measurement tasks. Our evaluations of real-
world packet traces. our prototype on NetFPGA. and
the implementation of five measurement tasks on top of
OpenSketch, demonstrate that OpenSketch is general, ef-
ficient and easily programmable.

1 Introduction

a new soft e
key challenge is to strike a careful balance between gen-
erality ing a wide variety of tasks)

and efficiency (enabling high link speed and low cost).
Flow-based measurements such as NetFlow [2] and
sFlow [42] provide generic support for different mea-
surement tasks, but consume too resources (¢.g.. CPU,
memory, bandwidth) [28, 18, 19]. For example. to iden-
tify the big flows whose byte volumes are above a thresh-
old (i.c.. heavy hitter detection which is important for
traffic engineering in data centers [6]), NetFlow collects
flow-level counts for sampled packets in the data planc.
A high sampling rate would lead to too many counters,
while a lower sampling rate may miss flows. While there
are many NetFlow improvements for specific measure-
ment tasks (e.g.. [48, 19]), a different measurement task
may need to focus on small flows (c.g., anomaly detec-
tion) and thus requiring another way of changing Net-
Flow. Instead, we should provide more customized and
lynamic de llecti  the soft-
ware written by operators based on the measurement re-
i and provide on th

accuracy.

As an alternative, many skerch-based streaming algo-
rithms have been proposed in the theoretical research
community [7, 12, 46, 8, 20, 47], which provide efficient

Recent advances in soft defined (SDN)
have signii improved network Net-
‘work management involves two important stages: (1)
measuring the network in real time (e.g.. identifying traf-
fic anomalies or large traffic aggregates) and then (2)
adjusting the control of the network accordingly (e.g.,
routing, access control, and rate limiting). While there
have been many efforts on designing the right APIs for
network control (e.g., OpenFlow [29], ForCES [1], rule-
based forwarding [33], etc.), little thought has gone into
designing the right APIs for measurement. Since con-

support for individual management tasks.
However, these algorithms are not deployed in practice
because of their lack of generality: Each of these algo-
rithms answers just one question or produces just one
statistic (¢.g.. the unique number of destinations), so it
is oo expensive for vendors to build new hardware to
support each function. For example, the Space-Saving
heavy hitter detection algorithm [8] maintains a hash ta-
ble of items and counts, and requires customized opera-
tions such as keeping a pointer to the item with minimum
counts and replacing the minimum-count entry with a

ABSTRACT

Network management requires accurate estimates of met-
rics for many applications including traffic engineering (e.g..
heavy hitters), anomaly detection (e.g., entropy of source
addresses). and security (e.g.. DDoS detection). Obtain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fidelity general-
purpose approaches such as sampling, or (2) high fidelity
but complex algorithms customized to specific application-
level metrics. Ideally, a solution should be both general
(i.c.. supports many applications) and provide accuracy com-
parable to custom algorithms. This paper presents Univ-
Mon, a framework for flow monitoring which leverages re-
cent theoretical advances and demonstrates that it is possible
to achieve both generality and high accuracy. UnivMon uses
an application-agnostic data plane monitoring primitive; dif-
ferent (and possibly unforescen) estimation algorithms run
in the control plane, and use the statistics from the data plane
to compute application-level metrics. We present a proof-
of-concept implementation of UnivMon using P4 and de-
velop simple coordination techniques to provide a “one-big-
switch” abstraction for network-wide monitoring. We eval-
uate the effectiveness of UnivMon using a range of trace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
lutions across a range of monitoring tasks.

CCS Concepts

eNetworks — Network monitoring; Network measure-
ment;

Keywords
Flow Monitoring, Sketching, Streaming Algorithms
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1 Introduction

Network is multi-fz d and a
range of tasks including traffic engineering [11,32], attack
and anomaly detection [49], and forensic analysis [46]. Each
such management task requires accurate and timely statis~
tics on different application-level metrics of interest; e.g., the
flow size distribution [37], heavy hitters [10], entropy mea-
sures [38,50], or detecting changes in traffic patterns [44].

Ata high level, there are two classes of techniques to esti-
‘mate these metrics of interest. The first class of approaches
relies on generic flow monitoring, typically with some form
of packet sampling (c.g., NetFlow [25]). While generic flow
‘monitoring is good for coarse-grained visibility, prior work
has shown that it provides low accuracy for more fine-grained
‘metrics [30,31,43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
sketching or streaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
rics of interest that can yield provable resource-accuracy trade-
offs (e.g., [17,18,20,31,36,38,43]).

While the body of work in data streaming and sketching
has made significant contributions, we argue that this trajec-
tory of crafting special-purpose algorithms is untenable in
the long term. As the number of monitoring tasks grows, this
entails significant investment in algorithm design and hard-
ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide libraries to
reduce the implementation effort and offer efficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resources
have to be committed (a priori) to a specific set of metrics
to monitor and will have fundamental blind spots for other
‘metrics that are not currently being tracked.

Ideally, we want a monitoring framework that offers both
generality by delaying the binding to specific applications
of interest but at the same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity simultaneously has been an elusive goal both i
ory [33] (Question 24) as well as in practice [45].

In this paper, we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultancously achieve
both generality and high fidelity across a broad spectrum of
‘monitoring tasks [31, 36,38, 51]. UnivMon builds on and

ABSTRACT
Network measurement is challenged to fulfill stringent re-
source requirements in the face of massive network traffic.
While approximate measurement can trade accuracy for re-
source savings, i 1 eff fig-
ure the ffs

2018 Conference, August 20-25, 2018, Budapest, Hungary. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3230543.3230559

1 INTRODUCTION
Network measurement is indispensable to modern network
loud: i

Such user burdens are caused by how existing approximate
measurement approaches inherently deal with resource con-
flicts when tracking massive network traffic with limited
resources. In particular, they tightly couple resource confige
urations with accuracy parameters, so as to provision suffi-
cient resources to bound the measurement errors. We design
SketchLearn, a novel sketch-based measurement framework
that resolves resource conflicts by learning their statistical
properties to eliminate conflicting traffic components. We
prototype SketchLearn on OpenVSwitch and P4, and our
testbed experiments and stress-test simulation show that
SketchLearn accurately and automatically monitors various
traffic statistics and effectively supports network-wide mea-
surement with limited resources.

CCS CONCEPTS

« Networks — Network measurement;
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d data center: mea-
sure a variety of traffic statistics, such as per-flow frequency,
to infer the key behaviors or any unexpected patterns in op-
erational networks. They use the measured traffic statistics
to form the basis of management operations such as traffic
engineering, performance diagnosis, and intrusion preven-
tion. Unfortunately, measuring traffic statistics is non-trivial
in the face of massive network traffic and large-scale net-
work deployment. Error-free measurement requires per-flow
tracking [15], yet today’s data center networks can have
thousands of concurrent flows in a very small period from
50ms (2] down to even 5ms [56). This would require tremen=
dous resources for performing per-flow tracking.

In view of the resource constraints, many approaches in
the literature leverage approximation techniques to trade be-
tween resource usage and measurement accuracy. Examples
include sampling [9, 37, 64), top-k counting [5, 43, 44, 46],
and sketch-based approaches [18, 33, 40, 42, 58], which we
collectively refer to as approximate measurement approaches.
Their idea is to construct compact sub-linear data structures
to record traffic statistics, backed by theoretical guarantees
on how to achieve accurate measurement with limited re-
sources. Approximate measurement has formed building
blocks in many state-of-the-art network-wide measurement
systems (e.g., [32, 48, 55, 60, 62, 67]), and is also adopted in
production data centers [31, 68].

Although theoretically sound, existing approximate mea-
surement approaches are inconvenient for use. In such ap-
proaches, massive network traffic competes for the limited
resources, thereby introducing measurement errors duc to
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counter in sk To mitigate errors,
sufficient resources must be provisioned in approximate mea-
surement based on its theoretical guarantees. Thus, there
exists a tight binding between resource configurations and
accuracy parameters. Such tight binding leads to several prac-
tical limitations (sec §2.2 for details): (i) administrators need


https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf

Today we’ll talk about: important questions,
how ‘sketches’ answer them,
limitations of ‘sketches’,

and my master thesis :)
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Sketches compute statistical summaries,

favoring elements with high frequency.

Let £=0.01, ||x||,=10000 (= &-]/x||,=100)
Assume two flows x_, x,,

with ||x.||, =1000, ||x,|, =50

Error relative to stream size: 1%
flow size: X :10%, x.: 200%

80



Other Problems a Sketch can’t handle

causality patterns rare things

\
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target applications
How do we build a fast What cool things

reprogrammable switch? can we do with it?



P4 hardware P4-based
target applications

How do we build a fast
reprogrammable switch?



“Programmable switches are 10-
100x slower than fixed-function
switches. They cost more and
consume more power.”

Conventional wisdom in networking

BAREFCOIT

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



How can we allow network programmability in the field,
at reasonable cost, and without sacrificing speed

supporting Tbhps of
backplane throughput



Let's look at a concrete design:
Reconfigurable Match Tables (RMT)
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z| sdn-chip-sigcomm-2013.pdf (page 1 of 12)
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Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN

Pat Bosshart', Glen Gibb*, Hun-Seok Kim', George Varghese®, Nick McKeown?,
Martin Izzard’, Fernando Mujica’, Mark Horowitz*
"Texas Instruments *Stanford University *Microsoft Research
pat.bosshart@gmail.com {grg, nickm, horowitz}@stanford.edu
varghese@microsoft.com {hkim, izzard, fmujica}@ti.com

ABSTRACT

In Software Defined Networking (SDN) the control plane
is physically separate from the forwarding plane. Control
software programs the forwarding plane (e.g., switches and
routers) using an open interface, such as OpenFlow. This
paper aims to overcomes two limitations in current switch-
ing chips and the OpenFlow protocol: i) current hardware
switches are quite rigid, allowing “Match-Action” processing
on only a fixed set of fields, and ii) the OpenFlow specifi-
cation only defines a limited repertoire of packet processing
actions. We propose the RMT (reconfigurable match ta-
bles) model, a new RISC-inspired pipelined architecture for
switching chips, and we identify the essential minimal set
of action primitives to specify how headers are processed in
hardware. RMT allows the forwarding plane to be changed
in the field without modifying hardware. As in OpenFlow,
the programmer can specify multiple match tables of arbi-
trary width and depth, subject only to an overall resource
limit, with each table configurable for matching on arbitrary
fields. However, RMT allows the programmer to modify all
header fields much more comprehensively than in OpenFlow.
Our paper describes the design of a 64 port by 10 Gb/s
switch chip implementing the RMT model. Our concrete
design demonstrates, contrary to concerns within the com-
munity, that flexible OpenFlow hardware switch implemen-
tations are feasible at almost no additional cost or power.

Categories and Subiect Descriptors

1. INTRODUCTION

To improve is to change; to be perfect is to change
often. Churchill

Good abstractions—such as virtual memory and time-
sharing—are paramount in computer systems because they
allow systems to deal with change and allow simplicity of
programming at the next higher layer. Networking has pro-
gressed because of key abstractions: TCP provides the ab-
straction of connected queues between endpoints, and IP
provides a simple datagram abstraction from an endpoint to
the network edge. However, routing and forwarding within
the network remain a confusing conglomerate of routing pro-
tocols (e.g., BGP, ICMP, MPLS) and forwarding behaviors
(e.g., routers, bridges, firewalls), and the control and for-
warding planes remain intertwined inside closed, vertically
integrated boxes.

Software-defined networking (SDN) took a key step in ab-
stracting network functions by separating the roles of the
control and forwarding planes via an open interface between
them (e.g., OpenFlow [27]). The control plane is lifted up
and out of the switch, placing it in external software. This
programmatic control of the forwarding plane allows net-
work owners to add new functionality to their network, while
replicating the behavior of existing protocols. OpenFlow has
become quite well-known as an interface between the con-
trol plane and the forwarding plane based on the approach
known as “Match-Action”. Roughly, a subset of packet bytes

[SIGCOMM'1 3]



Let's look at a concrete design:
Reconfigurable Match Tables (RMT)

Forwarding Metamorphosis:
Fast Programmable Match-Action
Processing in Hardware for SDN

Pat Bosshart, Glen Gibb, Hun-Seok Kim,
George Varghese, Nick McKeown, Martin lzzard,
Fernando Mujica, Mark Horowitz

Texas Instruments, Stanford University, Microsoft

Source: Presentation slides from SIGCOMM'201 3 (also available online) 1
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The paper argues that flexibility does not come at
the price of performance or cost

Outline

e Conventional switch chips are inflexible
 SDN demands flexibility...sounds expensive...

e How do we do it: The RMT switch model
* Flexibility costs less than 15%




Let's look first at a fixed-function switch composed of
a (de-)parser and a sequence of processing stages

Fixed function switch

Queues

by

11111

L2 L3 ACL Out

Parser
Deparser

\ 4

— Data —




In such a switch,

each stage is particularized to its usage
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This specificity makes it impossible to...

trade memory size for another

L3: 16k x 32
Longest prefix  acL. ak

match

IRRRRRRRER
Action: set L2D

Parser

Fixed function switch

L2: 128k x 48
Exact match

Ternary match
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This specificity makes it impossible to...
add a new table

Fixed function switch

L2: 128k x 48

L3: 16k x 32
Exact match .
Longest prefix ACL: 4k
match Ternary match
Queues
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This specificity makes it impossible to...

support new headers or new actions

Fixed function switch

Parser

L2: 128k x 48

Exact match

L3: 16k x 32
Longest prefix
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What if you need flexibility?

* Flexibility to:
— Trade one memory size for another
— Add a new table
— Add a new header field
— Add a different action

* SDN accentuates the need for flexibility

— Gives programmatic control to control plane,
expects to be able to use flexibility




What does SDN want?

Multiple stages of match-action
— Flexible allocation

Flexible actions
Flexible header fields

No coincidence OpenFlow built this way...




Alternative ways to enable flexibility don't compare in
terms of cost-performance ratio

What about Alternatives?
Aren’t there other ways to get flexibility?

e Software? 100x too slow, expensive
* NPUs? 10x too slow, expensive
* FPGAs? 10x too slow, expensive




What We Set Out To Learn

* How do | design a flexible switch chip?
 What does the flexibility cost?




Unsurprisingly...
building flexible switching chipset is challenging

What’s Hard about a
Flexible Switch Chip?

* Big chip

* High frequency

* Wiring intensive
 Many crossbars

* Lots of TCAM

* |nteraction between physical design and
architecture

e Good news? No need to read 7000 IETF RFC’s!




Enter...
Reconfigurable Match Tables (RMT)

Outline

e Conventional switch chip are inflexible

e How do we do it: The RMT switch model
* Flexibility costs less than 15%

 SDN demands flexibility...sounds expensive...
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What kind of switch architecture could support
flexibility and yet run at Terabits per second?

Throughput 1 Tbps
aggregate

Packet size 1000 bits
average

# operations 10

per packet (avg.)

10 billion op./second



If our switch has a single processor,
this would require us to run it at 10 Ghz...

lookup
table memory
I routing
packets 10 Ghz
> 2t ACL processor

1 billion/sec 10: ...



Let's parallelize things with a
packet-parallel architecture



What about we duplicate the processing units?
Each of which clocked at 1 Ghz

lookup
table

T
l l l l

memory

I routing I routing I routing 1 Ghz I routing
2 ACL 2 ACL 2 ACL PrOCESSOT 2 ACL
10: ... 10: ... 10: ... 10: ...

T T T T

100M pkt/sec 100M pkt/sec 100M pkt/sec 100M pkt/sec



One issue though is to scale
the memory-to-CPU bandwidth

lookup
table

!
} ! ! '

memory

bottleneck

I routing I routing I routing 1 Ghz I routing
2 ACL 2 ACL 2 ACL PrOLESSOT 2 ACL
10: ... 10: ... 10: ... 10: ...

T T T T

100M pkt/sec 100M pkt/sec 100M pkt/sec 100M pkt/sec



We could replicate the memory of course...
but that comes at a huge costs in die area

lookup lookup lookup emor lookup

table table table Y table
I routing I routing I routing 1 Ghz I routing
2. ACL 2. ACL 2. ACL protessor 2. ACL
10: ... 10: ... 10: ... 10: ...

T T T T

100M pkt/sec 100M pkt/sec 100M pkt/sec 100M pkt/sec



What if we organize the processing
as a pipeline instead?



Pipelined architectures organize processing through a
sequence of processing units and local memory

switching routing ACL tunnel
table table table table
packets
> switching — routing — ACL —>  tunnel
1 billion/sec
1 Ghz 1 Ghz 1 Ghz 1 Ghz

Processor Processor Processor Processor



For flexibility,
each processing unit/memory can be made generic

lookup lookup lookup lookup
table table table table
packets
> CPU — CPU — CPU — CPU
1 billion/sec
1 Ghz 1 Ghz 1 Ghz 1 Ghz

Processor Processor Processor Processor



Each CPU can process distinct packets, with up to
10 packets going through the pipeline simultaneously

lookup lookup lookup lookup
table table table table
PN
‘D5 p4 I p3 I p2 I pl I
packets . . . .

> CPU — CPU — CPU — CPU
1 billion/sec

1 Ghz 1 Ghz 1 Ghz 1 Ghz
processor processor processor processor



Performance vs Flexibility

* Multiprocessor: memory bottleneck
* Change to pipeline
* Fixed function chips specialize processors

* Flexible switch needs general purpose CPUs

Memory —>

CPU

Memory ——

CPU

—)L Memory ——

CPU




How We Did It

e Memory to CPU bottleneck

e Replicate CPUs

* More stages for finer granularity
* Higher CPU cost ok




Match/Action Forwarding Model
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The runtime behavior of the parser & the match stages
is defined through the RMT abstract model

The RMT Abstract Model

e Parse graph
* Table graph




The parse graph contains nodes which corresponds to
a header field and identifies the next field that follows

Arbitrary Fields: The Parse Graph

Packet: Ethernet IPV4 TCP

[ Ethernet 1

{1/\£1

T | [ o




The table graph contains nodes,
each of which represents a match table

Reconfigurable Match Tables:
The Table Graph

VLAN

/H ERTYPE
MAC \
FORWARD IPV4-DA IPV6-DA

L

ACL

\11/




How do we implement in hardware
a programmable parser and a logical pipeline?



How do we implement in hardware

a programmable parser and a logical pipeline?
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M

= ancs48-gibb.pdf (page 1 of 12)

Design Principles for Packet Parsers

Glen Gibbt, George Varghese*, Mark Horowitz', Nick McKeown?

tStanford University

fMicrosoft Research

{grg, horowitz, nickm}@stanford.edu varghese@microsoft.com

ABSTRACT

All network devices must parse packet headers to decide
how packets should be processed. A 64 x 10 Gb/s Ethernet
switch must parse one billion packets per second to extract
fields used in forwarding decisions. Although a necessary
part of all switch hardware, very little has been written on
parser design and the trade-offs between different designs. Is
it better to design one fast parser, or several slow parsers?
What is the cost of making the parser reconfigurable in the
field? What design decisions most impact power and area?

In this paper, we describe trade-offs in parser design, iden-
tify design principles for switch and router designers, and
describe a parser generator that outputs synthesizable Ver-
ilog that is available for download. We show that i) packet
parsers today occupy about 1-2% of the chip, and ii) while
future packet parsers will need to be programmable, this
only doubles the (already small) area needed.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications

Keywords

Parsing; Design principles; Reconfigurable parsers

1. INTRODUCTION

Deasnite their varietv enery network device examines fields

<FEthernet . IPvda____, TCP__ , o, payioad—s

Len: 14B Len: ? Len: ?
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Figure 1: A TCP packet.

In practice, packets often contain many more headers.
These extra headers carry information about higher level
protocols (e.g., HTTP headers) or additional information
that existing headers do not provide (e.g., VLANs' in a col-
lege campus, or MPLS? in a public Internet backbone). It is
common for a packet to have eight or more different packet
headers during its lifetime.

To parse a packet, a network device has to identify the
headers in sequence before extracting and processing specific
fields. A packet parser seems straightforward since it knows
a priort which header types to expect.

In practice, designing a parser is quite challenging:

1. Throughput. Most parsers must run at line-rate,
supporting continuous minimum-length back-to-back
packets. A 10Gb/s Ethernet link can deliver a new
packet every 70ns; a state-of-the-art Ethernet switch
ASIC with 64 x 40 Gb/s ports must process a new

naclot overv 270 o

[ANCS'1 3]



Parsing is the (complex) process of identifying and
extracting the appropriate fields in a packet header

Throughput Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Dependency Parsing involves sequential processing
as headers typically point to the next one

Incompleteness Some headers do not even identify
the subsequent header

Heterogeneity Many header formats exist that
can appear in various orders/locations



Parse graphs are directed acyclic graphs
encoding header types and their sequence

cw&netl‘w%

R-I Pva g — A

—/

Ethernet
VLAN ﬁ VLAN -
802.1ad 802.1Q
5~ (ARP) ((RARP ) S <
802.1ah) ’__//“

EoMPLS

MPLS)

\

OP—V6) EoMPLS

(c) Edge.

(IPv4 )

(GRE QPsec ESP

(lPsecAH) (SCTP)

UDP

(tcp) (ICmP)

(d) Service provider.

Figure 3: Parse graph examples for various use cases.
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(e) Union of use cases (“big-union”).

Source: Design Principles for Packet Parsers, Gibb et al.




A parser can be divided into two separate blocks:

header identification and field extraction

implements the parse graph's

state machine

__________________________ :
|
Header data * $ :

Header
Identification

Header types

Field
Extraction

} l & locations
Fields

Parser'

|

|

|

o :Accumulated

© 0|, fields To
[T E ' » Match
Eall Engine

:

|

|

|

extracts the chosen fields

from identified headers

Source: Design Principles for Packet Parsers, Gibb et al.



In 2 programmable parser, the two modules rely on

runtime information instead of hard-coded logic

stored in memory,
e.g. in RAM and/or TCAM

v

Header data

v

Header

Identification Extraction

Field

Fields

State & Next
header state

Field
locations

data

stores the bit sequences
that identify the headers

——p
Match index

Action
RAM

Source: Design Principles for Packet Parsers, Gibb et al.

t

acket Header

Vector

To

stores the next state,
the fields to extract,
and any other data (if any)

» Match
Engine



Linked together, a SRAM and TCAM can encode
the transition table attached to a parsing graph

; TCAM SRAM
Curr. Hdr. Lookup Val. | |Next Hdr. Hdr. Len Next lookup offset
VLAN;, 0x0800 [Pv4 4 0
VLAN, 0x8100 || VLAN, 4 2
VLAN, 0x0800 Pv4 4 0
(a) Graph fragment. (b) Corresponding parse table entries.

Source: Design Principles for Packet Parsers, Gibb et al.



How do we implement in hardware
a programmable parser and a logical pipeline?



A compiler translates a given RMT logical pipeline
(specified in P4) into a physical one

RMT Logical to Physical Table Mapping

R AR

«J(V\

Action
Action

Table Graph




Each physical stage contains dedicated SRAM,
for exact matches, and TCAM, for ternary matches

Physical Physical Physical
Stage 1 Stage 2 Stage n

Table Graph 640b




The compiler maps each individual logical stage
to one or more physical stage.

Physical Physical Physical
Stage 1 Stage 2 Stage n
3
ACL
IPV4 I AC
2 5
VLAN IPV6
7 TCP
4
L2S
8 UDP
Logical Logical Table 6
Table 1 L2D
) Ethertype




Small tables can share a stage (up to 16 per stage),
while large tables can span multiple ones

Physical Physical Physical
Stage 1 Stage 2 Stage n
3
9 ACL
IPV4
2 5
VLAN IPV6
7 TCP
4
L2S
8 UDP
Logical Logical Table 6
Table 1 L2D
) Ethertype




The RMT pipeline relies on many Arithmetic Logic Units
(ALU) to perform actions on the result of a match

Action Processing Model

L
ALU
|
—
> ?

Match result Data — i

Field

Header In

Field

Instruction

26




Each ALU modifies only one word of a header
(a header is composed of many words)

Action Processing Model

Field

Header In

Field

Match result Data :

Instruction

L
ALU
X
—
> ?

26




Each stage of the RMT pipeline contains
one ALU per word of the header vector (that's a lot of ALUs)

Modeled as Multiple VLIW CPUs per Stage

Match result . .
----------- > VLIW Instructions

27




The RMT pipeline
in a few statistics

* 64 x 10Gb ports
— 960M packets/second
— 1GHz pipeline

* Programmable parser

e 32 Match/action stages

Our Switch Design

e Huge TCAM: 10x current chips
e 64K TCAM words x 640b

e SRAM hash tables for exact
matches

e 128K words x 640b
e 224 action processors per stage

e All OpenFlow statistics counters




Building a RMT pipeline is only 15% more expensive
than building a fixed-function switching pipeline

Outline

e Conventional switch chip are inflexible
 SDN demands flexibility...sounds expensive...
* How do | doit: The RMT switch model

* Flexibility costs less than 15%

29




The biggest cost is the memory...
not the processing logic

Cost of Configurability:
Comparison with Conventional Switch

* Many functions identical: /O, data buffer, queueing...
* Make extra functions optional: statistics

* Memory dominates area
— Compare memory area/bit and bit count

e RMT must use memory bits efficiently to compete on cost

e Techniques for flexibility
— Match stage unit RAM configurability
— Ingress/egress resource sharing
— Table predication allows multiple tables per stage
— Match memory overhead reduction
— Match memory multi-word packing




In terms of die area, flexibility is not very expensive
at least, not anymore... mainly thanks to Moore's law

Chip Comparison with Fixed Function Switches

Area
Sein | eaioichip |Eaacot
» |0, buffer, queue, CPU, etc 37% 0.0%
» Match memory & logic 54.3% 8.0%
» VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%

Total extra area cost 14.2%




Serializer/Deserializer (SerDes) usually account
for 30% of the area

Serlal IIO About 30% of switch ch|p area

Ericsson Spider (2011)

Intel Alta (2011)
‘ ;ﬂ%!!lmi!léééﬂ

. _J
Broadcom Tomahawk (2014) Barefoot Tofino (2016)

NETWORKS Copyright © 2017 - Barefoot Networks
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Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Memory usually account for ~50% of the die area,

30% Serial I/0

20% Logic
Packet
Processing

50% Memory

Lookup Tables
Packet Buffer

BAREFCO:T

NETWORKS Copyright © 2017 - Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



As SerDes and memory technologies progress,
the relative area dedicated to logic shrinks

Observations With every new generation of network devices,
people expect larger speeds and more memory

Consequences relative areas of SerDes/memory stay roughly equivalent

logic shrinks



Even with an increased space for logic,
the device tends to be relatively the same

Chip Comparison with Fixed Function Switches

Area
Sein | eaioichip |Eaacot
» |0, buffer, queue, CPU, etc 37% 0.0%
» Match memory & logic 54.3% 8.0%
» VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%

Total extra area cost 14.2%




The same lesson applies for power

Chip Comparison with Fixed Function Switches

Area
- |0, buffer, queue, CPU, etc 37% 0.0%
®) Match memory & logic 54.3% 8.0%
m) VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Power
Sen | Power%ofchip | btracost
®» /o 26.0% 0.0%
» Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
» Logic active 16.8% 5.5%




Conclusion

* How do we design a flexible chip?
— The RMT switch model

— Bring processing close to the memories:
* pipeline of many stages

— Bring the processing to the wires:
* 224 action CPUs per stage

* How much does it cost?
— 15%

e Lots of the details how we designed this in 28nm
CMOS are in the paper




That was just an academic paper
Let's look at a real flexible pipeline
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That was just an academic paper
Let's look at a real flexible pipeline

BAREFCO:T

NETWORKS

Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017

BAREFCO:T
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Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Barefoot Tofino 6.5 Thps backplane
several billion packets per second at line rate

6.5Tb/s Tofino™ Summary

o State of the art design
o Single Shared Packet Buffer

o TSMC 16nm FinFET+ MAC + Serial /0

e Four Match+Action Pipelines o N
o Fully programmable PISA Embodiment Pipeline Pipeline
o All compiled programs run at line-rate. 0 Shared 1
o Up to 1.3 million IPv4 routes Packet

{ Buffer |
- - &

» Port Configurations MaidwAckn | T | MetcheActon
> 65 x 100GE/40GE il Al
o 130 x 50GE

o 260 x 25GE/10GE

e CPU Interfaces
o PCle: Gen3 x4/x2/x1
o Dedicated 100GE port

BAREFCOIT 20

NETWORKS Copyright © 2017 - Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Barefoot Tofino 6.5 Thps backplane
several billion packets per second at line rate

Tofino. Simplified Block Diagram

Reset /
Clocks CPU MAC

Control & configuration

Rx MACs Ingress
10/25/40/50/100 Pipeline Pipeline 10/25/40/50/100

Rx MACs Ingress
10/25/40/50/100 Pipeline

Ingress
Pipeline

Rx MACs Ingress Tx MAC S
10/25/40/50/100 Pipeline 10/25/40/50/100 .

"
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

BAREFOO’T Copyright © 2017 - Barefoot Networks

NETWORKS

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino relies on Packet Header Vector (PHV) to pass
states between stages

Packet Header Vector (PHV)

)

e A set of uniform containers that
carry the headers and metadata
along the pipeline

e Fields can be packed into any
container or their combination

e PHV Allocation step in the
compiler decides the actual
packing

J\

J \

32-bit
™ words

- -

\

BAREFCOIT

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino uses a folded pipeline in which the same stages
are used for both the ingress and the egress pipeline

Unified Pipeline

e There is no difference between ingress and egress processing
o The same blocks can be efficiently shared

Reset/

PCle CPU MAC

Control & configuration

Ingress
10/25/40/50/100 Pipeline

Tx MAC Egress
10/25/40/50/100 Pipeline

Traffic
Manager

Rx MACs Ingress
10/25/40/50/100 Pipeline

Tx MAC Egress
10/25/40/50/100 Pipeline

BAREFCOT

NETWORKS Copyright 201 Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



In terms of structure,
Tofino basically follows the RMT pipeline

The Basic Structure

1/10/ Ingress
40/100G Match-Action Deparser
Rx MACs Pipeline

full packet

BAREFCO:T

NETWORKS Copyright © 2017 - Barefoot Networks

Common
Queuing
and Packet Data
Buffers

25

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017




The same goes for the design of
the programmable parser

Parser
TCAM SRAM
>
9]
X
ﬁ
()]
=
Q
=
4))
next state
Match Field Extract < 8b
" Match Field selection
I 16b
Input Shift Register shift contro I 32b
Output Field
extract register
From MAC
BAREEE%QOSI:!. Copyright © 2017 - Barefoot Networks 26

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017




Putting everything together

Pipeline Organization

Egress header
Egress Packet body

Combined Ingress/Egress Match-Action Pipeline

MAU 0 MAU n
PHV PHV

Egress
Parser 0

Jasiedag
ssalbg
Jojonssuo)
19Xoed
ssalbg

Egress
Parser
M

Ingress
Parser 0

Jesiteda(
ssalbu|
Jlojonasuo)
}oxoed
ssalbu|
siayng j9)oed
puy sananp

Ingress
Parser
M

Recirculation Buffer
(Packet Reference, Metadata)

Ingress Packet body

BAREFOO’T Copyright © 2017 - Barefoot Networks
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Each match action stage is regularly structured around:
crossbars, memory units, and ALUSs

What Happens Inside?

Match Table
(SRAM or TCAM)

3

Match+Action

BAREFCO:T Stage (Ugit)
NETWORKS

opyright © 2017 - Barefoot Networks

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Parallelism in P4

apply {
/* Parallel lookups possible x/
subnet_vlan.apply();
mac_vlan.apply();
protocol_vlan.apply()
port_vlan.apply();

/* Resolution in next stage *x/
resolve_vlan.apply();

by

apply {
if (!subnet_vlan.apply().hit) {
if (!mac_vlan.apply().hit) {
if (!'protocol_vlan.apply().hit) {
port_vlan.apply();
}

BAREFCO:T

NETWORKS

e Most P4 programs have inherent
parallelism

e Others can be executed speculatively

e Switch.p4
o ~100 tables and if() statements
o ~22 stages divided between ingress and egress
o Degree of parallelism ~4.5

Copyright © 2017 - Barefoot Networks
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How Tofino Supports Parallel Processing

e Multiple tables mean multiple parallel lookups
e All actions from all active tables are combined

: 3

N lookups 1 - M actions | | 5

:ii Ternary |'3|'|

g Match Q.

- 5

- L Xbar rrrrr CD
Match+Action
Stage (Unit)

Match Action Unit
BAREEE%QOR{!. Copyright © 2017 - Barefoot Networks 31

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Parallelism in P4

action ipv4_in_mpls(in bit<20> labell, in bit<20> label2) { : P 8 4
hdr.mpls[@].setValid(); e Most ac_tlons can be easily ﬂ. »
hdr.mpls[0].label = labell; parallelized 1 e
hdr.mpls[0l.exp = 0; o This action can be executed in ﬂ
hdr.mpls[@].bos = 0; 1 cvele _
hdr_mpls[0].ttl = 64; y : -

= Number of parallel operations: 12 1
hdr.mpls[1].setValid(); o Keep fields in separate
hdr.mpls[1] = { label2, 0, 1, 128 }; containers : |
@ 16-bit

if (hdr.vlan_tag.isValid()) { 1 words

hdr.vlan_tag.etherType = 0x8847;
} else { _

hdr.ethernet.etherType = 0x8847; =

} } +I3

® 32-bit
: . wordls
| I

BAREFCO:T

NETWORKS Copyright © 2017 - Barefoot Networks 32

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



How Tofino Supports Parallel Processing

e Multiple tables mean multiple parallel lookups
e All actions from all active tables are combined
e Each PHV container has its own, independent processor

[ @] ) { opcode, operands }
ALU
@ 0 1 2 4 5 o000 | v3 | M1 M
N IOOkUpS S > M actions 1 1 314 |5 | eee | v BEM wi| M
ALU .
ALU .
AL 0 2 3 4 5 000 | M3 | m2 | M1
I AU o B M|
Match+Action
Stage (Unit)
BARE&SVOOEI:! Copyright © 2017 - Barefoot Networks 34

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017




What's next?

Tofino 2: 12.8 Tbps (7 nm switching ASIC)
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P4 hardware P4-based
target applications

What cool things
can we do with it?



A high-level, non-exhaustive overview of the research
surrounding data plane programmability



Performance
Monitoring

Applications offloading

Platforms

Correctness

Management



Data plane Performance
programmability Monitoring

Applications offloading

Platforms Data plane
Correctness programmability

Management



A large set of papers on programmable data planes

aim at improving performance, esp. load balancing
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CONGA: Distributed Congestion-Aware Load Balancing
for Datacenters

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu,

Andy Fingerhut, Vinh The Lam (Google), Francis Matus, Rong Pan, Navindra Yadav,
George Varghese (Microsoft)

Cisco Systems

ABSTRACT

We prescat the design,implementation, and cvaluation of CONGA,
a k-based distributed c aware load balancing mech-
anism for datacenters. CONGA exploits recent trends including
the use of regular Clos topologies and overlays for network vir-
walization. It splits TCP flows into flowlets, est
congestion on fabric paths, and allocates flowlets to p.nh~ based
on feedback from remote switches. This enables CONGA to effi-
ciently balance load and seamlessly handle asymmetry, without re-
quiring any TCP modifications. CONGA has been implemented in
custom ASICs as part of a new datacenter fabric. In testbed exper-
iments, CONGA has 5x better flow completion times than ECMP
even with a single link failure and achieves 2-8 better through-
put than MPTCP in Incast scenarios. Further, the Price of Anar-
chy for CONGA is provably small in Leaf-Spine topologies; hence
CONGA is nearly as effective as a centralized scheduler while be-
ing able to react to congestion in microseconds. Our main thesis
is that datacenter fabric load balancing is best done in the network,
and requires global schemes such as CONGA to handle asymmetry.

Categories and Subject Descriptors: C.2.1 [Computer-Communication
Networks]: Network Architecture and Design
Keywords: Datacenter fabric; Load balancing; Distributed

. INTRODUCTION

Datacenter networks being deployed by cloud providers as well
as enterprises must provide large bisection bandwidth to support
an ever increasing array of applications, ranging from financial ser-
vices to big-data analytics. They also must provide agility, enabling
any application to be deployed at any server, in order to realize
operational efficiency and reduce costs. Seminal papers such as
VL2 [18] and Portland [1] showed how to achieve this with Clos
topologies, Equal Cost MultiPath (ECMP) load balancing, and the
decoupling of endpoint addresses from their location. These de-
sign principles are followed by next generation overlay technolo-
gies that accomplish the same goals using standard encapsulations
such as VXLAN [35] and NVGRE [45]

However, it is well known [2, 41, 9, 27, 44, 10] that ECMP can
balance load poorly. First, because ECMP randomly hashes flows

Permission to make digital or hard copies of all or part of this work for personal or
d without fee provided that copies are not made or distributed
for profit o comm bear this notice and the full cita
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re

classroom use is gri

ind that copi

publish, o post on servers or (o redistribute to lists, requires prior specific pemmission
and/or a fee. Request pecmisions o permissons@
SIGCOMM'14, 4. Chic SA.
Copyright 2014 ACM 978. uww 2836-4/14/08 .. $15.00.
huup/Adx,doi,ore/10.1145/2619239.2626316

CONCGA

1o paths, hash collisions can cause significant imbalance if there are
e flows. More importantly, ECMP uses a purely local de-
cision to split traffic among equal cost paths without knowledge of
potential downstream congestion on each path. Thus ECMP fares
poorly with asymmetry caused by link failures that occur frequently
and are disruptive in datacenters [17, 34]. For instance, the recent
study by Gill er al. [17) shows that failures can reduce delivered
traffic by up to 40% despite built-in redundancy

Broadly speaking, the prior work on addressing ECMP's short-
comings can be classified as cither centralized scheduling (c.g.
Hedera [2]), local switch mechanisms (e.g., Flare [27]), or host-
based transport protocols (¢.g., MPTCP [41]). These approaches
all have important drawbacks. Centralized schemes are oo slow
for the traffic volatility in datacenters [28, 8] and local congestion-
aware mechanisms are suboptimal and can perform even worse
than ECMP with asymmetry (§2.4). Host-based methods such
MPTCP are challenging to deploy because network operators often
do not control the end-host stack (e.g., in a public cloud) and even
when they do, some high performance applications (such as low
latency storage systems [39, 7]) bypass the kemel and implement
their own transport. Further, host-based load balancing adds more
complexity to an already complex transport layer burdened by new
requirements such as low latency and burst tolerance [4] in data
centers. As our experiments with MPTCP show, this can make for
brittle performance (§5).

Thus from a philosophical standpoint it is worth asking: Can
load balancing be done in the network without adding to the com-
plexity of the transport layer? Can such a network-based approach
compute globally optimal allocations, and yet be implementable in
a realizable and distributed fashion to allow rapid reaction in mi-
croseconds? Can such a mechanism be deployed today using stan-
dard encapsulation formats? We seek to answer these questions
in this paper with a new scheme called CONGA (for Congestion
Aware Balancing). CONGA has been implemented in custom ASICs
for a major new datacenter fabric product line. While we report on
lab experiments using working hardware together with simulations
and mathematical analysis, customer trials are scheduled in a few
months as of the time of this writing

Figure 1 surveys the design space for load balancing and places
CONGA in context by following the thick red lines through the de-
sign tree. At the highest level, CONGA is a distributed scheme to
allow rapid round-trip timescale reaction to congestion to cope with
bursty datacenter traffic [28, 8]. CONGA is implemented within the
network to avoid the deployment issues of host-based methods and
additional complexity in the transport layer. To deal with asymme-
try, unlike carlier proposals such as Flare [27] and LocalFlow [44]
that only use local information, CONGA uses global congestion
information, a design choice justified in detail in §2.4
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HULA: Scalable Load Balancing Using
Programmable Data Planes
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DRILL: Micro Load Balancing for
Low-latency Data Center Networks
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“Workdone i e oblivious schemes like WCMP and Presto in asymmet-
e flow completions

ric scenarios, while achieving avera
time within 10-20% of CONGA.

and 2x of CONGA in
asymmetry and heavy traffic load.

1 Introduction

plications such as bi
cloud storag

centers, Equal Cost MultiPath (ECMP) [16], randomly
assigns flows to different paths using a hash taken over
packet headers. ECMP is widely deployed due toits sim-
plicity but suffers from well-known performance prob-
lems such as hash collisions and the inability to adapt

LetFlow

to implement and resilient to petwork asymmetry has

idea first proposed more. e hm decade ago,
ique for resilient load bal

periment
simulated topologies with large

Datacenter networks must provide large bis
1 widih to support the increasing traffic demands of ap-

g-data analytics, web services, and
achieve this by load balan
over many paths in multi-rooted tree topol
Clos [13] and Fat-tree [1]. These designs are widely de-
ployed: for instance, Google has reported on using Clos
fabrics with more than 1 Pops of biscction bandwidthin

\| has thus emerged on

ic Load ing with Flowlet Switching

Mohammad Alizadeh® Parvin Taheri* “Tom Edsall*

Massachusetts Institute of Technology

better load balancing designs for datacenter networks.
A defining feature of these designs is the informa-
tion that they use to make decisions. At one end of the
spectrum are designs that are oblivious to traffic con-
ditions [16. 10, 9. 15] or rely only on local measure-
ts [24, 20] at the switches. ECMP and Presto [15],
which picks paths in round-robin f
chunks of data (called “flowcells™), fall in this category.
Atthe other extreme are designs 2,22, 23, 18,3, 21, 29]
that use knowledge of traffic conditions and congestion
on different paths to make decisions. Two recent exam-
ples are CONGA (3] and HULA [21], which us
back between the switches to gather path-wise conges-
tion information and shift traffic o less-congested paths.
Load balancing schemes that require path conges
information, naturally, are much more complex. Current
designs cither use a centralized fabric controller [2. 8, 22]
o optimize path choices frequently or requi
mechanisms, at the end-hosts [23, 18] or switches [3, 2
301, to implement end-to-end or hop-by-hop feedback.
On the other hand, schemes that lack visibility into path
congestion have a key drawback: they perform poorly
asymmetric topologies [3]. As we discuss in
reason is that the optimal traffic split across asymmet-
tic paths depends on (dynamically varying) traffic con-
ditions; hence, traffic-oblivious schemes are fundamen-
tally unable to make optimal decisions and can perform
poorly in asymmetric topologies.
A ‘common in practice for a variety of rea-
s, such s ik falures and heterogeneity in network
equipment [31, 12, 3]. Handling asymmetry gracefully,
e, is important. This mises the question: are
there simple load balancing schemes that are resilient
10 asymmetry? In this paper. we answer this question in
the affirmative by developing LetFlow, a simple scheme
that requires no state to make load balancing decisions,
and yet itis very resilient to network asymmetry
LetFlow is extremely simple: switches pick a path at
random for each flowlet. Thats it! A flowlet is a burst
of packets that is separated in time from other bursts by
a sufficient gap — called the “flowlet timeout”. Flowlet
switching [27, 20] was proposed over a decade ago as
a way to split TCP flows across mumpm paths without
causing packet reordering. Rem:
this paper. flowlet switchi

on-trivial
1
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A large set of papers on programmable data planes
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ABSTRACT

We present the design, implementation, and evaluation of CONGA,
a k-based distributed c load balancing mec
anism for datacenters. CONGA exploits recent trends including
the use of regular Clos topologies and overlays for network vir-
walization. It splits TCP flows into flowlets, estimates real-time
congestion on fabric paths, and allocates flowlets to paths based
on feedback from remote switches. This enables CONGA to effi-
ciently balance load and seamlessly handle asymmetry, without re-
quiring any TCP modifications. CONGA has been implemented in

Cs as part of a new datacenter fabric. In testbed exper-

put than MPTCP in Incast scenarios. Furthe;
chy for CONGA is provably small in Lea
CONGA is nearly as effective as a centralized scheduler while be-
ing able to react to congestion in microseconds. Our main thesis
is that datacenter fabric load balancing is best done in the network,
and requires global schemes such as CONGA to handle asymmetry.

ine topologies: hence

Categories and Subject Descriptors: C
Networks]: Network Architecture and Desig:
Keywords: Datacenter fabric; Load balancin

1 [Computer-Communication

: Distributed

1. INTRODUCTION

Datacenter networks being deployed by cloud providers as well
as enterprises must provide large bisection bandwidth to support
an ever increasing array of applications, ranging from financial ser-
vices to big-data analytics. They also must provid y
any application to be deployed at any server, in order to realize
operational efficiency and reduce costs. Seminal papers such as
L2 [18] and Portland [1] showed how to achieve this with Clos
topologies, Equal Cost MultiPath (ECMP) load balancing, and the
decoupling of endpoint addresses from their location. These de-
sign principles are followed by next generation overlay technolo-
gies that accomplish the same goals using
such as VXLAN [35] and NVGRE [45]
However, it is well known [2, 41, 9, 27, 44, 10] that ECMP can
balance load poorly. First, because ECMP randomly hashes flows

standard encapsulations
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1o paths, hash collisions can cause significant imbalance if there are
flows. More importantly, ECMP uses a purely local de-
cision to split traffic among equal cost paths without knowledge of
potential downstream congestion on each path. Thus ECMP fares
poorly with asymmetry caused by link failures that occur frequently
and are disruptive in datacenters [17, 34]. For instanc
study by Gill er al. [17) shows that failures can reduce delivered
traffic by up to 40% despite built-in redundancy

Broadly speaking, the prior work on addressing ECMP's short-
comings can be classified as either centralized scheduling (e.g..
Hedera [2]), local switch mechanisms (e.g., Flare [27]), or host-
based transport protocols (¢.g., MPTCP [41]). These approaches
all have important drawbacks.
for the traffic volatility in datacenters [28, 8] and local congestion-
aware mech suboptimal and can perform even worse
than ECMP with asymmetry (§2.4). Host-based methods such as
MPTCP are challenging to deploy because network operators often
do not control the end-host stack (e.g., in a public cloud) and even
when they do, some high performance applications (such as low
latency storage systems [39, 7]) bypass the kemel and implement
their own transport. Further, host-based load balancing adds more
complexity to an already complex transport layer burdened by new
requirements such as low latency and burst tolerance [4] in data-
centers. As our experiments with MPTCP show, this can make for
brittle performance (§5).

Thus from a philosophical standpoint it is worth asking: Can
load balancing be done in the network without adding to the com-
plexity of the transport layer? Can such a network-based approach
compute globally optimal allocations, and yet be implementable in
a realizable and distributed fashion to allow rapid reaction in mi-
croseconds? Can such a mechanism be deployed today using stan-
dard encapsulation formats? We seek to answer these questions
in this paper with a new scheme called CONGA (for Congestion
Aware Balancing). CONGA has been implemented in custom ASICs
for a major new datacenter fabric product line. While we report on
lab experiments using working hardware together with simulations
and mathematical analysis, customer trials are scheduled in a few
months as of the time of this writing

Figure 1 surveys the design space for load balancing and places
CONGA in context by following the thick red lines through the de-
sign tree. At the highest level, CONGA is a distributed scheme to
allow rapid round-trip timescale reaction to congestion to cope with
bursty datacenter traffic [28, 8]. CONGA is implemented within the
network to avoid the deployment issues of host-based methods and
additional complexity in the transport layer. To deal with asymme-
try, unlike carlier proposals such as Flare [27] and LocalFlow [44]
that only use local information, CONGA uses global congestion
information, a design choice justified in detail in §2.4.

the recent

Centralized schemes are too slow
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Motivation

DC networks need large bisection bandwidth for
distributed apps (big data, HPC, web services, etc)

Single-rooted tree
» High oversubscription

1000s of server ports

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Motivation

DC networks need large bisection bandwidth for
distributed apps (big data, HPC, web services, etc)

Multi-rooted tree [Fat-tree, Leaf-Spine, ...]
» Full bisection bandwidth, achieved via multipathing

1000s of server ports

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Multi-rooted != Ideal DC Network

Ideal DC network:
Big output-queued switch

/Y| Y/ NDY//\N

1000s of server ports

» Simplifies BW management
[EyeQ, FairCloud, pFabric, Varys, ...]

= /e

» No internal bottlenecks = predictable

Multi-rooted tree
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Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014




Multi-rooted !'= Ideal DC Network

Ideal DC network:
Big output-queued switch

Multi-rooted tree

/1YY |\ Y/

1000s of server ports 1000s of server ports

Need precise load balancing

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Today: ECMP Load Balancing

Pick among equal-cost paths by a hash of 5-tuple
» Approximates Valiant load balancing
> Preserves packet order

Problems:
- Hash collisions
(coarse granularity)

- Local & stateless
(v. bad with asymmetry
due to link failures)

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Dealing with Asymmetry

local knowledge

Handling asymmetry needs non

W
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Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014



Dealing with Asymmetry

Handling asymmetry needs non-local knowledge

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Dealing with Asymmetry:
ECMP

Scheme Thrput

S ECMP
60G
30G - (Local Stateless)
(UDP) 30G Local Cong-Aware
7777 | Global Cong-

Aware

40G -
(TCP)

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Dealing with Asymmetry:
Local Congestion-Aware

Scheme Thrput

e ECMP
60G
30G (Local Stateless)
(UDP) 30G Local Cong-Aware  50G
‘ ' Global Cong-

Aware

40G
(TCP)

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Dealing with Asymmetry:
Global Congestion-Aware

Scheme Thrput

S ECMP
60G
30G = (Local Stateless)
(UDP) 30G Local Cong-Aware  50G
""" : Global Cong- 70G

Aware

40G S
(TCP)
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Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Global Congestion-Awareness
(in Datacenters)

Datacenter
i Latency microseconds
Opportunity —> -
 Topology simple, regular
Challenge ——> Traffic volatile, bursty

11

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



Global Congestion-Awareness
(in Datacenters)

Datacenter
" Latency microseconds
Opportunity —> -
i Topology simple, regular
Challenge ——> Traffic volatile, bursty

Key Insight:
Use extremely fast, low latency
distributed control

11

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



CONGA in 1 Slide

1. Leaf switches (top-of-rack) track congestion to
other leaves on different paths in near real-time

1. Use greedy decisions to minimize bottleneck util

/ﬁf_ R . _‘\\\ Fast feedback loops
77 \\ / Y between leaf switches,
/1 / i : :
I 1 \\‘ directly in dataplane
11 VI 1y
"4 4 A\A'4 W
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Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,
Mohammad Alizadeh et al., 2014



P4-based data-plane load-balancing
with better scalability than CONG

HULA

) sosrpaper®7plt (page 101 12)

HULA: Scalable Load Balancing Using
Programmable Data Planes
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Let it Flow: Resilient A

ic Load
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Abstract

Datacenter networks require efficient multi-path load
balancing to achieve high bisection bandwidth. Despite
wuch progress in recent years towards addressing this
challenge. a load balancing design that is both simple
to implement and resilient to network asymmetry has
remained elusive. In this paper, we show that flowler
switching, an idea first proposed more than a decade ago.
is a powerful technique for resilient load balan
asymmetry. Flowlets have a remarkable elasticity prop-
erty: their size changes atically based on traffic
conditions on their path, N ue this insight to develop
LetFlow, a very simple load balancing scheme that s re-
silient to as low simply picks paths at ran-
dom for flowlets and lets their elasticity naturally bal-
nt paths. Our extensive eval-
uation with real hardware and packet-level simulations
shows that LetFlow is very effective. Despite being much
simpler, it performs significantly better than other traffic
oblivious schemes like WCMP and Presto in asymmet-
ic scenarios, while achi werage flow uvmpk
time ithin 10.20% of CONGA in testbed &

and 2 of CONGA in simulated topologies it hrgc
asymmetry and heavy traffic load.

ance the traffic on di

1 Introduction

Datacenter networks must provide large bisection band-
widih to support the increasing traffic demands of ap-
Plcaion such 25 big-data analytics, web services, and
cloud storage. They achieve this by load balancing traffic
over many p..u.\ in muli-rooted tree topologies such as
Clos [13] and Fat-tree [1]. These designs are widely de-
ployed; for in Google has reported on using Clos
fabrics with more than 1 Pbps of bisection bandwidih in
its datacenters [25]

‘The standard load balanci today’s data-
centers, Equal Cost MultiPath (ECMP) [16]. randomly
assigns flows to different paths using  hash taken over
packet headers. ECMP is widely deployed due to s sim-
plicity but suffers from well-known performance prob-
lems such as hash collisions and the inability to adapt
{0 asymmetry in the network topology. A rich body of
work [10, 2, 22, 23, 18, 3, 15, 21] has thus emerged on
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better load balancing designs for datacen
A defining feature of these designs is the informa-
tion that they use to make decisions. At one end of the
spectrum are designs that are oblivious to traffic con-
ditions [16. 10, 9. 15] or rely only on local measure-
20] at the switches. ECMP and Presto s
which picks paths in round-robin fashion for fixe
chunks of data (called “flowcells"), fall in this cumgm)
Atthe other extreme are designs 2,22, 23, 18,3, 21, 29]
that use knowledge of traffic conditions and congestion
on different paths to make decisions. Two rec
ples are CONGA [3] and HULA
back between the switches to gather path-wise co
tion information and shift traffic o less-congested paths.
Load balancing schemes that require path congestion
information, naturally, are much more complex. Current
designs cither use a centralized fabric controller [2. 5,
o optimize path choices freque o
mechanisms, at the end-hosts [23, 18] or switches [3, 21,
301, to implement end-to-end or hop-by-hop feedback.
On the other hand, schemes that lack visibility into path
congestion have a key drawback: they perform poorly in
asymmetric topologies [3). As we discuss in §2.1, the
reason is that the optimal traffic split across asymmet-
tic paths depends on (dynamically varying) traffic con-
ditions; hence, traffic-oblivior s are fundamen-
tally unable to make optimal decisions and can perform
poorly in asymmetric \umlu es.
is con practice for a variety of rea-
s, such s ik falures and heterogeneity in network
equipment [31, 12, 3]. Handling asymmetry gracefully,
e, is impor s uestion: are
there simple load balancing schemes that are resilient
10 asymmetry? In this paper. we answer this question in
the affirmative by developing LetFlow, a simple scheme
that requires no state to make load balancing decisions,
and yet itis very resilient to network asymmetry
LetFlow is extremely simple: switches pick a path at
random for each flowlet. Thats it! A flowlet is a burst
of packets that is separated in time from other bursts by
a sufficient gap — called the “flowlet timeout”. Flowlet
switching [27, 20] was proposed over a decade ago as
a way to split TCP flows across multiple paths without
acket reordering bly.
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