
Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 22 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Last week on

Advanced Topics in Communication Networks

6

A bloom �lter is a streaming algorithm

answering speci�c questions approximately.

Recap

7

A bloom �lter is a streaming algorithm

answering speci�c questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

Recap

8

A bloom �lter is a streaming algorithm

answering speci�c questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

What about other questions?

12

What are the most frequent elements?

Count/CountMin + Heap, …

Is a certain �ow in the stream?

Bloom Filter

How frequently does an �ow appear?

Count Sketch, CountMin Sketch, ...

How many �ows belong to a certain subnet?

SketchLearn SIGCOMM ‘18

What �ows are in the stream?

Invertible Bloom Filter, HyperLogLog Sketch, ...

18

In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

→ n distinct elements

(in the worst case)

→ n counters required? :(

20

Bloom Filters

quickly “�lter” only those

elements that might be in

the set

Save space by allowing

false positives.

Sketches

provide a approximate

frequencies of elemetns

in a data stream.

Save space by allowing

mis-counting.

Probabilistic datastructures can help again!

22

A CountMin sketch uses the same principles as a

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

24

A CountMin sketch uses the same principles as a

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

26

Pr [x̂i
estimated

frequency

− xi
true

frequency

≥ ε‖x‖1
sum of

frequencies

]≤δ

relative to L1 norm

The estimation error exceeds

with a probability smaller than

ε‖x‖1
δ

28

A CountMin sketch uses the same principles as a

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

29

A CountMin Sketch uses multiple arrays and hashes.

 "

w indices

per array
(range of hashes)

6 "

d arrays
(one hash function per array)

w⋅d counters
(total size)

counters

66

A CountMin sketch uses the same principles as a

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

CountMin sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε ⌉

Then x̂i− xi≥ε‖x‖1 with a probability less than δ

67

A CountMin sketch uses the same principles as a

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

→ only one design out of many!

68

A Count sketchMin uses the same principles as a

counting bloom �lter, but is designed to have

provable L2 error bounds for frequency queries.

72

CountMin sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε ⌉

Then x̂i− xi≥ε‖x‖1 with a probability less than δ

Count sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε2 ⌉
Then x̂i− xi≥ε‖x‖2 with a probability less than δ

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.

Sketches are the new black

OpenSketch

NSDI ‘13

UnivMon

SIGCOMM ‘16

SketchLearn

SIGCOMM ‘18

...and many more!

[source] [source] [source]

https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf

76

Today we’ll talk about: important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)

80

Sketches compute statistical summaries,

favoring elements with high frequency.

Error relative to stream size: 1%

3ow size: x
a
: 10%, x

b
: 200%

Let ε=0.01, ‖x‖1=10000 (⇒ ε⋅‖x‖1=100)

Assume two flows xa , xb ,

with ‖xa‖1=1000, ‖xb‖1=50

81

Other Problems a Sketch can’t handle

causality patterns rare things

P4-based
applications

P4 hardware
target

How do we build a fast

reprogrammable switch?

What cool things
can we do with it?

This week on

Advanced Topics in Communication Networks

P4-based
applications

P4 hardware
target

How do we build a fast

reprogrammable switch?

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

supporting Tbps of

backplane throughput

How can we allow network programmability in the field,

at reasonable cost, and without sacrificing speed

Let's look at a concrete design:

Reconfigurable Match Tables (RMT)

[SIGCOMM'13]

Forwarding Metamorphosis:
Fast Programmable Match-Action
Processing in Hardware for SDN

Pat Bosshart, Glen Gibb, Hun-Seok Kim,
George Varghese, Nick McKeown, Martin Izzard,

Fernando Mujica, Mark Horowitz

Texas Instruments, Stanford University, Microsoft

1

Let's look at a concrete design:

Reconfigurable Match Tables (RMT)

Source: Presentation slides from SIGCOMM'2013 (also available online)

https://conferences.sigcomm.org/sigcomm/2013/slides/sigcomm/10.pptx

Outline
• Conventional switch chips are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

2

The paper argues that flexibility does not come at 
the price of performance or cost

Fixed function switch

6
De

pa
rs

er

In

Queues

Data

OutACL
Stage

L3
Stage

L2
Stage

Pa
rs

er

Let's look first at a fixed-function switch composed of 
a (de-)parser and a sequence of processing stages

Fixed function switch

7
D

ep
ar

se
r

In

Queues

Data

OutACL
Stage

L3
Stage

L2
Stage

A
ct

io
n:

 s
et

 L
2D

Stage 1

L2
 T

ab
le

L2: 128k x 48
Exact match

A
ct

io
n:

 s
et

 L
2D

, d
ec

TT
L

Stage 2

L3
 T

ab
le

L3: 16k x 32
Longest prefix
match

A
ct

io
n:

 p
er

m
it

/d
en

y
Stage 3

A
CL

 T
ab

le

ACL: 4k
Ternary match

Pa
rs

er

In such a switch,

each stage is particularized to its usage

Fixed function switch

4
D

e
p

a
rs

e
r

In

Queues

Data

OutACL

Stage

L3

Stage

L2

Stage

A
c
ti

o
n

:
s
e

t
L
2

D

Stage 1

L
2

 T
a

b
le

L2: 128k x 48

Exact match

A
c
ti

o
n

:
s
e

t
L
2

D
,

d
e

c

T
T

L

Stage 2

L
3

 T
a

b
le

L3: 16k x 32

Longest prefix

match

A
c
ti

o
n

:
p

e
rm

it
/
d

e
n

y
Stage 3

A
C

L
 T

a
b

le

ACL: 4k

Ternary match

?
?

?
?

?
?

?
?

?

P
a

rs
e

r

This specificity makes it impossible to…

trade memory size for another

Fixed function switch

5
D

ep
ar

se
r

In

Queues

Data

OutACL
Stage

L3
Stage

L2
Stage

A
ct

io
n:

 s
et

 L
2D

Stage 1

L2
 T

ab
le

L2: 128k x 48
Exact match

A
ct

io
n:

 s
et

 L
2D

, d
ec

TT
L

Stage 2

L3
 T

ab
le

L3: 16k x 32
Longest prefix
match

A
ct

io
n:

 p
er

m
it

/d
en

y
Stage 3

A
CL

 T
ab

le

ACL: 4k
Ternary match

PBB
Stage

Pa
rs

er

This specificity makes it impossible to…

add a new table

Fixed function switch

3
D

e
p

a
rs

e
r

In

Queues

Data

OutACL

Stage

L3

Stage

L2

Stage

A
c
ti

o
n

:
s
e

t
L
2

D

Stage 1

L
2

 T
a

b
le

L2: 128k x 48

Exact match

A
c
ti

o
n

:
s
e

t
L
2

D
,

d
e

c

T
T

L

Stage 2

L
3

 T
a

b
le

L3: 16k x 32

Longest prefix

match

A
c
ti

o
n

:
p

e
rm

it
/
d

e
n

y
Stage 3

A
C

L
 T

a
b

le

ACL: 4k

Ternary match

P
a

rs
e

r

X X X X X

This specificity makes it impossible to…

support new headers or new actions

What if you need flexibility?

• Flexibility to:
– Trade one memory size for another
– Add a new table
– Add a new header field
– Add a different action

• SDN accentuates the need for flexibility
– Gives programmatic control to control plane,

expects to be able to use flexibility

8

What does SDN want?

• Multiple stages of match-action
– Flexible allocation

• Flexible actions
• Flexible header fields

• No coincidence OpenFlow built this way…

9

What about Alternatives?
Aren’t there other ways to get flexibility?

• Software? 100x too slow, expensive
• NPUs? 10x too slow, expensive
• FPGAs? 10x too slow, expensive

10

Alternative ways to enable flexibility don't compare in

terms of cost-performance ratio

What We Set Out To Learn

• How do I design a flexible switch chip?
• What does the flexibility cost?

11

What’s Hard about a
Flexible Switch Chip?

• Big chip
• High frequency
• Wiring intensive
• Many crossbars
• Lots of TCAM
• Interaction between physical design and

architecture
• Good news? No need to read 7000 IETF RFC’s!

12

Unsurprisingly…

building flexible switching chipset is challenging

Outline
• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

13

Enter…

Reconfigurable Match Tables (RMT)

What kind of switch architecture could support

flexibility and yet run at Terabits per second?

Throughput
aggregate

1 Tbps

Packet size
average

1000 bits

operations
per packet (avg.)

10

Requirements 10 billion op./second

If our switch has a single processor,

this would require us to run it at 10 Ghz…

lookup

table
memory

10 Ghz
processor

1:

10:

routing

2: ACL

…

packets

1 billion/sec

not feasible

Let's parallelize things with a

packet-parallel architecture

100M pkt/sec

What about we duplicate the processing units?

Each of which clocked at 1 Ghz

lookup

table
memory

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

100M pkt/sec 100M pkt/sec 100M pkt/sec

1 Ghz
processor

100M pkt/sec

lookup

table
memory

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

100M pkt/sec 100M pkt/sec 100M pkt/sec

1 Ghz
processor

One issue though is to scale  
the memory-to-CPU bandwidth

bottleneck

We could replicate the memory of course…

but that comes at a huge costs in die area

100M pkt/sec

lookup

table
memory

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

1:

10:

routing

2: ACL

…

100M pkt/sec 100M pkt/sec 100M pkt/sec

1 Ghz
processor

lookup

table

lookup

table

lookup

table

What if we organize the processing

as a pipeline instead?

Pipelined architectures organize processing through a

sequence of processing units and local memory

switching

switching

table

routing ACL tunnel

routing

table

ACL

table

tunnel

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

For flexibility,

each processing unit/memory can be made generic

CPU

lookup

table

CPU CPU CPU

lookup

table

lookup

table

lookup

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

Each CPU can process distinct packets, with up to  
10 packets going through the pipeline simultaneously

CPU

lookup

table

CPU CPU CPU

lookup

table

lookup

table

lookup

table

1 Ghz
processor

packets

1 billion/sec

1 Ghz
processor

1 Ghz
processor

1 Ghz
processor

p1p2p3p4p5
pN

Match/Action Forwarding Model
Pr

og
ra

m
m

ab
le

 P
ar

se
r

De
pa

rs
erIn

Queues
Ac

tio
n

Stage 1

M
at

ch
 Ta

bl
e

Ac
tio

n
Stage 2

M
at

ch
 Ta

bl
e

…

Data

Out

21

Ac
tio

n

Stage N

M
at

ch
 Ta

bl
e

The RMT Abstract Model

• Parse graph
• Table graph

14

The runtime behavior of the parser & the match stages  
is defined through the RMT abstract model

Arbitrary Fields: The Parse Graph

Ethernet

IPV4 IPV6

TCP UDP

Ethernet IPV4 TCPPacket:

15

The parse graph contains nodes which corresponds to

a header field and identifies the next field that follows

Reconfigurable Match Tables:
The Table Graph

18

VLAN

MAC
FORWARD IPV4-DA

ETHERTYPE

RCPACL

IPV6-DA

The table graph contains nodes,

each of which represents a match table

How do we implement in hardware

a programmable parser and a logical pipeline?

How do we implement in hardware

a programmable parser and a logical pipeline?

[ANCS'13]

Parsing is the (complex) process of identifying and

extracting the appropriate fields in a packet header

Throughput

Dependency

Incompleteness

Heterogeneity

Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Parsing involves sequential processing

as headers typically point to the next one

Some headers do not even identify

the subsequent header

Many header formats exist that

can appear in various orders/locations

Parse graphs are directed acyclic graphs

encoding header types and their sequence

Source: Design Principles for Packet Parsers, Gibb et al.

A parser can be divided into two separate blocks:

header identification and field extraction

extracts the chosen fields
 from identified headers

implements the parse graph's
state machine

Source: Design Principles for Packet Parsers, Gibb et al.

stored in memory,

e.g. in RAM and/or TCAM

In a programmable parser, the two modules rely on

runtime information instead of hard-coded logic

stores the bit sequences
that identify the headers

stores the next state,
the fields to extract,
and any other data (if any)

Source: Design Principles for Packet Parsers, Gibb et al.

Linked together, a SRAM and TCAM can encode

the transition table attached to a parsing graph

TCAM SRAM

Source: Design Principles for Packet Parsers, Gibb et al.

How do we implement in hardware

a programmable parser and a logical pipeline?

A compiler translates a given RMT logical pipeline

(specified in P4) into a physical one

Each physical stage contains dedicated SRAM,  
for exact matches, and TCAM, for ternary matches

The compiler maps each individual logical stage

to one or more physical stage.

Small tables can share a stage (up to 16 per stage),

while large tables can span multiple ones

Instruction

ALU

Match result

Action Processing Model

He
ad

er
 In Fi
el

d

He
ad

er
 O

ut

Fi
el

d

Data

26

The RMT pipeline relies on many Arithmetic Logic Units

(ALU) to perform actions on the result of a match

Instruction

ALU

Match result

Action Processing Model

He
ad

er
 In Fi
el

d

He
ad

er
 O

ut

Fi
el

d

Data

26

Each ALU modifies only one word of a header

(a header is composed of many words)

ALU

VLIW Instructions
Match result

Modeled as Multiple VLIW CPUs per Stage

ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU

27

Each stage of the RMT pipeline contains  
one ALU per word of the header vector (that's a lot of ALUs)

Our Switch Design

• 64 x 10Gb ports
– 960M packets/second
– 1GHz pipeline

• Programmable parser
• 32 Match/action stages

28

• Huge TCAM: 10x current chips
• 64K TCAM words x 640b

• SRAM hash tables for exact
matches

• 128K words x 640b

• 224 action processors per stage
• All OpenFlow statistics counters

The RMT pipeline

in a few statistics

Outline

• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do I do it: The RMT switch model
• Flexibility costs less than 15%

29

Building a RMT pipeline is only 15% more expensive  
than building a fixed-function switching pipeline

Cost of Configurability:
Comparison with Conventional Switch

• Many functions identical: I/O, data buffer, queueing…
• Make extra functions optional: statistics
• Memory dominates area

– Compare memory area/bit and bit count
• RMT must use memory bits efficiently to compete on cost
• Techniques for flexibility

– Match stage unit RAM configurability
– Ingress/egress resource sharing
– Table predication allows multiple tables per stage
– Match memory overhead reduction
– Match memory multi-word packing

30

The biggest cost is the memory…

not the processing logic

Chip Comparison with Fixed Function Switches
Section Area % of chip Extra Cost
IO, buffer, queue, CPU, etc 37% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Total extra area cost 14.2%

Section Power % of chip Extra Cost
I/O 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%
Total extra power cost 12.4%

Area

Power

31

In terms of die area, flexibility is not very expensive

at least, not anymore… mainly thanks to Moore's law

Copyright © 2017 - Barefoot Networks

Serial I/O: About 30% of switch chip area

Intel Alta (2011) Cisco (2011) Ericsson Spider (2011)

Broadcom Tomahawk (2014) Barefoot Tofino (2016)

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Serializer/Deserializer (SerDes) usually account

for 30% of the area

Copyright © 2017 - Barefoot Networks

20% Logic
Packet

Processing

30% Serial I/O

50% Memory
Lookup Tables
Packet Buffer

Memory usually account for ~50% of the die area,

leaving us around 20% for the processing logic

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

As SerDes and memory technologies progress,

the relative area dedicated to logic shrinks

With every new generation of network devices,

people expect larger speeds and more memory

relative areas of SerDes/memory stay roughly equivalent

relative areas of logic shrinks

Observations

Consequences

Even with an increased space for logic,  
the device tends to be relatively the same

Chip Comparison with Fixed Function Switches
Section Area % of chip Extra Cost
IO, buffer, queue, CPU, etc 37% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Total extra area cost 14.2%

Section Power % of chip Extra Cost
I/O 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%
Total extra power cost 12.4%

Area

Power

31

Chip Comparison with Fixed Function Switches
Section Area % of chip Extra Cost
IO, buffer, queue, CPU, etc 37% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Total extra area cost 14.2%

Section Power % of chip Extra Cost
I/O 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%
Total extra power cost 12.4%

Area

Power

31

The same lesson applies for power

Conclusion

• How do we design a flexible chip?
– The RMT switch model
– Bring processing close to the memories:

• pipeline of many stages
– Bring the processing to the wires:

• 224 action CPUs per stage
• How much does it cost?
– 15%

• Lots of the details how we designed this in 28nm
CMOS are in the paper

32

A small subset of our lab @ITET with two Tofino 3.2 Tbps, 32x 100 GbE QSFP28

That was just an academic paper

Let's look at a real flexible pipeline

Copyright © 2017 - Barefoot Networks

Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

That was just an academic paper

Let's look at a real flexible pipeline

Barefoot Tofino 6.5 Tbps backplane

several billion packets per second at line rate

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

Tofino. Simplified Block Diagram

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

pipe 0
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

Control & configuration

Reset /
Clocks PCIe CPU MAC DMA

engines

pipe 1
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 2
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 3

Rx MACs
10/25/40/50/100

Ingress
Pipeline

Tx MAC
10/25/40/50/100

Traffic
Manager

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Barefoot Tofino 6.5 Tbps backplane

several billion packets per second at line rate

Tofino relies on Packet Header Vector (PHV) to pass

states between stages

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Tofino uses a folded pipeline in which the same stages

are used for both the ingress and the egress pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

The Basic Structure

25

1/10/
40/100G
Rx MACs

Ingress
Buffers

1/10/
40/100G
Rx MACs

Ingress
Match-Action

Pipeline

Common
Queuing

and Packet Data
Buffers

header

Parser Deparser

full packet

header’

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

In terms of structure,

Tofino basically follows the RMT pipeline

Copyright © 2017 - Barefoot Networks

Parser

26

From MAC

TCAM SRAM

shift control

Match Field selection

next state

next state
Input Shift Register

Match Field Extract

Data

state
Output Field
extract register

Action

P
acket H

eader V
ector

8b

16b

32b

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

The same goes for the design of

the programmable parser

Copyright © 2017 - Barefoot Networks

Pipeline Organization

28

MAU 0
PHV

MAU n
PHV

Ingress
D

eparser

MAC

MAC

MAC

MAC

Combined Ingress/Egress Match-Action Pipeline

Recirculation Buffer
(Packet Reference, Metadata)

Egress
Parser 0

Egress
Parser

M

Ingress
Parser 0

Ingress
Parser

M

Ingress
Packet

C
onstructor

Ingress Packet body

Egress
Packet

C
onstructor

Egress
D

eparser

Egress Packet body

Egress header

MAC

MAC

MAC

MAC

In
gr

es
s

Bu
ffe

r

Q
ueues And

Packet Buffers

Putting everything together

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

What Happens Inside?

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table
(SRAM or TCAM)

Cross
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Each match action stage is regularly structured around:

crossbars, memory units, and ALUs

Copyright © 2017 - Barefoot Networks

apply {
/* Parallel lookups possible */
subnet_vlan.apply();
mac_vlan.apply();
protocol_vlan.apply()
port_vlan.apply();

/* Resolution in next stage */
resolve_vlan.apply();

}

apply {
if (!subnet_vlan.apply().hit) {

if (!mac_vlan.apply().hit) {
if (!protocol_vlan.apply().hit) {

port_vlan.apply();
}

}
}

}

Parallelism in P4

30

• Most P4 programs have inherent
parallelism

• Others can be executed speculatively
• Switch.p4
◦ ~100 tables and if() statements
◦ ~22 stages divided between ingress and egress
◦Degree of parallelism ~4.5

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

How Tofino Supports Parallel Processing

•Multiple tables mean multiple parallel lookups
•All actions from all active tables are combined

31

Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

N lookups M actions

Xkey0 Action

XkeyN Action

Tkey0 Action

TkeyN Action

Exact
Match
Xbar

Packet H
eader Vector

Exact
Table 0

Ternary
Match
Xbar

Exact
Table N

Ternary
Table 0

Ternary
Table N

Action Engine

PH
V’

Match Action Unit

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

action ipv4_in_mpls(in bit<20> label1, in bit<20> label2) {
hdr.mpls[0].setValid();
hdr.mpls[0].label = label1;
hdr.mpls[0].exp = 0;
hdr.mpls[0].bos = 0;
hdr_mpls[0].ttl = 64;

hdr.mpls[1].setValid();
hdr.mpls[1] = { label2, 0, 1, 128 };

if (hdr.vlan_tag.isValid()) {
hdr.vlan_tag.etherType = 0x8847;

} else {
hdr.ethernet.etherType = 0x8847;

}
}

Parallelism in P4

32

• Most actions can be easily
parallelized
◦ This action can be executed in

1 cycle
■ Number of parallel operations: 12

• Keep fields in separate
containers

8-bit
words

8

8

16-bit
words

16

16

32

32

32-bit
words

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Copyright © 2017 - Barefoot Networks

How Tofino Supports Parallel Processing

•Multiple tables mean multiple parallel lookups
•All actions from all active tables are combined
• Each PHV container has its own, independent processor

34

Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

N lookups M actions
0 1 2 3 4 5 M-3 M-2 M-1 M0
0 1 4 5 M-3 M-1 M1 3

0 2 4 5 M-3 M-13 M-21

2 M-2

M

{ opcode, operands }

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

What's next?

Tofino 2: 12.8 Tbps (7 nm switching ASIC)

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

P4-based
applications

P4 hardware
target

What cool things
can we do with it?

A high-level, non-exhaustive overview of the research

surrounding data plane programmability

Correctness

Platforms

Management

for Data plane
programmability

A high-level, non-exhaustive overview of the research

surrounding data plane programmability

PerformanceData plane
programmability Monitoring

for

Applications offloading

PerformanceData plane
programmability Monitoring

for

Correctness

Platforms

Management

for Data plane
programmability

Applications offloading

A large set of papers on programmable data planes

aim at improving performance, esp. load balancing

CONGA [SIGCOMM'14]

HULA [SOSR'16]

DRILL [SIGCOMM'17]

LetFlow [NSDI'17]

A large set of papers on programmable data planes

aim at improving performance, esp. load balancing

CONGA [SIGCOMM'14]

HULA [SOSR'16]

DRILL [SIGCOMM'17]

LetFlow [NSDI'17]

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,

Mohammad Alizadeh et al., 2014

A large set of papers on programmable data planes

aim at improving performance, esp. load balancing

HULA [SOSR'16]

DRILL [SIGCOMM'17]

LetFlow [NSDI'17]stateless, yet congestion-aware

load-balancing decision

P4-based data-plane load-balancing

with better scalability than CONGA

"micro" load balancing,

packet-by-packet,  
can deal with micro-bursts

Advanced Topics in Communication Networks

Programming Network Data Planes

ETH Zürich

Laurent Vanbever

Oct 22 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

