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A bloom �lter is a streaming algorithm 

answering speci�c questions approximately.

Recap
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A bloom �lter is a streaming algorithm 

answering speci�c questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

Recap
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A bloom �lter is a streaming algorithm 

answering speci�c questions approximately.

Is X in the stream?
What is in the stream?Invertible Bloom Filter

What about other questions?
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What are the most frequent elements?

Count/CountMin + Heap, …

Is a certain �ow in the stream?

Bloom Filter

How frequently does an �ow appear?

Count Sketch, CountMin Sketch, ...

How many �ows belong to a certain subnet?

SketchLearn SIGCOMM ‘18

What �ows are in the stream?

Invertible Bloom Filter, HyperLogLog Sketch, ...
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In the worst case, an algorithm providing

exact frequencies requires linear space.

Data Stream

n elements in total

→ n distinct elements

(in the worst case)

→ n counters required? :(
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Bloom Filters

quickly “�lter” only those 

elements that might be in 

the set

Save space by allowing

false positives. 

Sketches

provide a approximate 

frequencies of elemetns

in a data stream.

Save space by allowing

mis-counting.

Probabilistic datastructures can help again!



22

A CountMin sketch uses the same principles as a 

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries. 
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A CountMin sketch uses the same principles as a 

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries. 
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Pr [ x̂i
estimated

frequency

− xi
true

frequency

≥ ε‖x‖1
sum of

frequencies

]≤δ

relative to L1 norm

The estimation error exceeds

with a probability smaller than    

ε‖x‖1
δ
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A CountMin sketch uses the same principles as a 

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries. 
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A CountMin Sketch uses multiple arrays and hashes.

 "

w indices

per array
(range of hashes)

6 "

d arrays
(one hash function per array)

w⋅d counters
(total size)

counters
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A CountMin sketch uses the same principles as a 

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries. 

CountMin sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε ⌉

Then x̂i− xi≥ε‖x‖1 with a probability less than δ
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A CountMin sketch uses the same principles as a 

counting bloom �lter, but is designed to have

provable L1 error bounds for frequency queries.

→ only one design out of many! 



68

A Count sketchMin uses the same principles as a 

counting bloom �lter, but is designed to have

provable L2 error bounds for frequency queries.
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CountMin sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε ⌉

Then x̂i− xi≥ε‖x‖1 with a probability less than δ

Count sketch recipe

Choose d=⌈ ln 1δ ⌉ , w=⌈eε2 ⌉
Then x̂i− xi≥ε‖x‖2 with a probability less than δ

The Count sketch uses additional hashing to

give L2 error bounds, but requires more resources.



Sketches are the new black

OpenSketch

NSDI ‘13

UnivMon

SIGCOMM ‘16

SketchLearn

SIGCOMM ‘18

...and many more!

[source] [source] [source]

https://www.usenix.org/system/files/tech-schedule/nsdi13-proceedings.pdf#page=38
http://users.ece.cmu.edu/~vsekar/papers/sigcomm16_univmon.pdf
https://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_sketchlearn.pdf
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Today we’ll talk about: important questions,

how ‘sketches’ answer them,

limitations of ‘sketches’,

and my master thesis :)
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Sketches compute statistical summaries,

favoring elements with high frequency.

Error relative to stream size: 1%

3ow size: x
a
: 10%, x

b
: 200%

Let ε=0.01, ‖x‖1=10000 (⇒ ε⋅‖x‖1=100)

Assume two flows xa , xb ,

with ‖xa‖1=1000, ‖xb‖1=50
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Other Problems a Sketch can’t handle

causality patterns rare things



P4-based
applications

P4 hardware
target

How do we build a fast  

reprogrammable switch?

What cool things 
can we do with it?

This week on 

Advanced Topics in Communication Networks



P4-based
applications

P4 hardware
target

How do we build a fast  

reprogrammable switch?



Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



supporting Tbps of  

backplane throughput

How can we allow network programmability in the field, 

at reasonable cost, and without sacrificing speed



Let's look at a concrete design: 

Reconfigurable Match Tables (RMT)

[SIGCOMM'13]



Forwarding Metamorphosis: 
Fast Programmable Match-Action 
Processing in Hardware for SDN

Pat Bosshart, Glen Gibb, Hun-Seok Kim, 
George Varghese, Nick McKeown, Martin Izzard,

Fernando Mujica, Mark Horowitz

Texas Instruments, Stanford University, Microsoft

1

Let's look at a concrete design: 

Reconfigurable Match Tables (RMT)

Source: Presentation slides from SIGCOMM'2013 (also available online)

https://conferences.sigcomm.org/sigcomm/2013/slides/sigcomm/10.pptx


Outline
• Conventional switch chips are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

2

The paper argues that flexibility does not come at 
the price of performance or cost



Fixed function switch
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Let's look first at a fixed-function switch composed of 
a (de-)parser and a sequence of processing stages



Fixed function switch

7
D

ep
ar

se
r

In

Queues

Data

OutACL 
Stage

L3 
Stage

L2 
Stage

A
ct

io
n:

 s
et

 L
2D

Stage 1

L2
 T

ab
le

L2: 128k x 48
Exact match

A
ct

io
n:

 s
et

 L
2D

, d
ec

TT
L

Stage 2

L3
 T

ab
le

L3: 16k x 32
Longest prefix
match

A
ct

io
n:

 p
er

m
it

/d
en

y
Stage 3

A
CL

 T
ab

le

ACL: 4k
Ternary match

Pa
rs

er

In such a switch, 

each stage is particularized to its usage



Fixed function switch
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This specificity makes it impossible to… 

trade memory size for another



Fixed function switch
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This specificity makes it impossible to… 

add a new table



Fixed function switch
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This specificity makes it impossible to… 

support new headers or new actions



What if you need flexibility?

• Flexibility to:
– Trade one memory size for another
– Add a new table
– Add a new header field
– Add a different action

• SDN accentuates the need for flexibility
– Gives programmatic control to control plane, 

expects to be able to use flexibility

8



What does SDN want?

• Multiple stages of match-action
– Flexible allocation

• Flexible actions
• Flexible header fields

• No coincidence OpenFlow built this way…

9



What about Alternatives?
Aren’t there other ways to get flexibility?

• Software? 100x too slow, expensive
• NPUs? 10x too slow, expensive
• FPGAs? 10x too slow, expensive

10

Alternative ways to enable flexibility don't compare in 

terms of cost-performance ratio



What We Set Out To Learn

• How do I design a flexible switch chip?
• What does the flexibility cost?

11



What’s Hard about a 
Flexible Switch Chip?

• Big chip
• High frequency
• Wiring intensive
• Many crossbars
• Lots of TCAM
• Interaction between physical design and 

architecture
• Good news? No need to read 7000 IETF RFC’s!

12

Unsurprisingly… 

building flexible switching chipset is challenging



Outline
• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do we do it: The RMT switch model
• Flexibility costs less than 15%

13

Enter… 

Reconfigurable Match Tables (RMT)



What kind of switch architecture could support 

flexibility and yet run at Terabits per second?

Throughput 
aggregate

1 Tbps

Packet size 
average

1000 bits

# operations 
per packet (avg.)

10

Requirements 10 billion op./second



If our switch has a single processor, 

this would require us to run it at 10 Ghz…

lookup 

table
memory

10 Ghz 
processor

1: 

10: 

routing

2: ACL

…

packets

1 billion/sec

not feasible



Let's parallelize things with a 

packet-parallel architecture



100M pkt/sec

What about we duplicate the processing units? 

Each of which clocked at 1 Ghz
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100M pkt/sec
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One issue though is to scale  
the memory-to-CPU bandwidth

bottleneck



We could replicate the memory of course… 

but that comes at a huge costs in die area

100M pkt/sec
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What if we organize the processing 

as a pipeline instead?



Pipelined architectures organize processing through a 

sequence of processing units and local memory

switching

switching 

table

routing ACL tunnel

routing 

table

ACL 

table

tunnel 

table

1 Ghz 
processor

packets

1 billion/sec

1 Ghz 
processor

1 Ghz 
processor

1 Ghz 
processor



For flexibility, 

each processing unit/memory can be made generic

CPU

lookup 

table

CPU CPU CPU

lookup 

table

lookup 

table

lookup 

table

1 Ghz 
processor

packets

1 billion/sec

1 Ghz 
processor

1 Ghz 
processor

1 Ghz 
processor



Each CPU can process distinct packets, with up to  
10 packets going through the pipeline simultaneously

CPU

lookup 

table

CPU CPU CPU
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table

lookup 

table

lookup 
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1 Ghz 
processor
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1 billion/sec
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The RMT Abstract Model

• Parse graph
• Table graph

14

The runtime behavior of the parser & the match stages  
is defined through the RMT abstract model



Arbitrary Fields: The Parse Graph

Ethernet

IPV4 IPV6

TCP UDP

Ethernet                               IPV4                                   TCPPacket:

15

The parse graph contains nodes which corresponds to 

a header field and identifies the next field that follows



Reconfigurable Match Tables:
The Table Graph

18

VLAN

MAC
FORWARD IPV4-DA

ETHERTYPE

RCPACL

IPV6-DA

The table graph contains nodes,  

each of which represents a match table



How do we implement in hardware 

a programmable parser and a logical pipeline?



How do we implement in hardware 

a programmable parser and a logical pipeline?

[ANCS'13]



Parsing is the (complex) process of identifying and 

extracting the appropriate fields in a packet header

Throughput

Dependency

Incompleteness

Heterogeneity

Parser must run at line-rate

parse 1 packet every 70 ns on a 10 Gbps link

Parsing involves sequential processing 

as headers typically point to the next one

Some headers do not even identify 

the subsequent header

Many header formats exist that  

can appear in various orders/locations



Parse graphs are directed acyclic graphs 

encoding header types and their sequence

Source: Design Principles for Packet Parsers, Gibb et al.



A parser can be divided into two separate blocks: 

header identification and field extraction

extracts the chosen fields  
 from identified headers

implements the parse graph's 
state machine

Source: Design Principles for Packet Parsers, Gibb et al.



stored in memory, 

e.g. in RAM and/or TCAM

In a programmable parser, the two modules rely on 

runtime information instead of hard-coded logic

stores the bit sequences 
that identify the headers 

stores the next state, 
the fields to extract, 
and any other data (if any)

Source: Design Principles for Packet Parsers, Gibb et al.



Linked together, a SRAM and TCAM can encode  

the transition table attached to a parsing graph

TCAM SRAM

Source: Design Principles for Packet Parsers, Gibb et al.



How do we implement in hardware 

a programmable parser and a logical pipeline?



A compiler translates a given RMT logical pipeline 

(specified in P4) into a physical one



Each physical stage contains dedicated SRAM,  
for exact matches, and TCAM, for ternary matches



The compiler maps each individual logical stage 

to one or more physical stage.



Small tables can share a stage (up to 16 per stage), 

while large tables can span multiple ones
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The RMT pipeline relies on many Arithmetic Logic Units 

(ALU) to perform actions on the result of a match
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Each ALU modifies only one word of a header 

(a header is composed of many words)



ALU

VLIW Instructions
Match result

Modeled as Multiple VLIW CPUs per Stage 

ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU

27

Each stage of the RMT pipeline contains  
one ALU per word of the header vector (that's a lot of ALUs)



Our Switch Design

• 64 x 10Gb ports
– 960M packets/second
– 1GHz pipeline

• Programmable parser
• 32 Match/action stages

28

• Huge TCAM: 10x current chips
• 64K TCAM words x 640b

• SRAM hash tables for exact 
matches

• 128K words x 640b

• 224 action processors per stage
• All OpenFlow statistics counters

The RMT pipeline  

in a few statistics



Outline

• Conventional switch chip are inflexible
• SDN demands flexibility…sounds expensive…
• How do I do it: The RMT switch model
• Flexibility costs less than 15%

29

Building a RMT pipeline is only 15% more expensive  
than building a fixed-function switching pipeline



Cost of Configurability:
Comparison with Conventional Switch

• Many functions identical:  I/O, data buffer, queueing…
• Make extra functions optional: statistics
• Memory dominates area

– Compare memory area/bit and bit count
• RMT must use memory bits efficiently to compete on cost
• Techniques for flexibility

– Match stage unit RAM configurability
– Ingress/egress resource sharing
– Table predication allows multiple tables per stage
– Match memory overhead reduction
– Match memory multi-word packing

30

The biggest cost is the memory… 

not the processing logic 



Chip  Comparison with Fixed Function Switches
Section Area % of chip Extra Cost
IO, buffer, queue, CPU, etc 37% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Total extra area cost 14.2%

Section Power % of chip Extra Cost
I/O 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%
Total extra power cost 12.4%

Area

Power

31

In terms of die area, flexibility is not very expensive 

at least, not anymore… mainly thanks to Moore's law



Copyright  © 2017 - Barefoot Networks

Serial I/O: About 30% of switch chip area

Intel Alta (2011) Cisco (2011) Ericsson Spider (2011)

Broadcom Tomahawk (2014) Barefoot Tofino (2016)

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Serializer/Deserializer (SerDes) usually account  

for 30% of the area
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20% Logic
Packet 

Processing

30% Serial I/O 

50% Memory
Lookup Tables
Packet Buffer

Memory usually account for ~50% of the die area, 

leaving us around 20% for the processing logic

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



As SerDes and memory technologies progress,  

the relative area dedicated to logic shrinks

With every new generation of network devices, 

people expect larger speeds and more memory

relative areas of SerDes/memory stay roughly equivalent

relative areas of logic shrinks

Observations

Consequences



Even with an increased space for logic,  
the device tends to be relatively the same

Chip  Comparison with Fixed Function Switches
Section Area % of chip Extra Cost
IO, buffer, queue, CPU, etc 37% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%
Total extra area cost 14.2%

Section Power % of chip Extra Cost
I/O 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%
Total extra power cost 12.4%

Area

Power
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The same lesson applies for power



Conclusion

• How do we design a flexible chip?
– The RMT switch model
– Bring processing close to the memories: 

• pipeline of many stages
– Bring the processing to the wires: 

• 224 action CPUs per stage
• How much does it cost?
– 15%

• Lots of the details how we designed this in 28nm 
CMOS are in the paper 

32



A small subset of our lab @ITET with two Tofino 3.2 Tbps, 32x 100 GbE QSFP28 

That was just an academic paper 

Let's look at a real flexible pipeline
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Programmable Data Plane at Terabit Speeds

Vladimir Gurevich
May 16, 2017

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

That was just an academic paper 

Let's look at a real flexible pipeline



Barefoot Tofino 6.5 Tbps backplane 

several billion packets per second at line rate

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017
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Tofino. Simplified Block Diagram

Each pipe has 16x100G MACs + a Packet
Additional ports for recirculation, Packet Generator, CPU

pipe 0
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

Control & configuration

Reset / 
Clocks PCIe CPU MAC DMA 

engines

pipe 1
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 2
Rx MACs

10/25/40/50/100
Ingress
Pipeline

Tx MAC
10/25/40/50/100

pipe 3

Rx MACs
10/25/40/50/100

Ingress
Pipeline

Tx MAC
10/25/40/50/100

Traffic 
Manager

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Egress
Pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Barefoot Tofino 6.5 Tbps backplane 

several billion packets per second at line rate



Tofino relies on Packet Header Vector (PHV) to pass  

states between stages

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Tofino uses a folded pipeline in which the same stages 

are used for both the ingress and the egress pipeline

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017
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The Basic Structure

25

1/10/
40/100G 
Rx MACs

Ingress 
Buffers

1/10/
40/100G 
Rx MACs

Ingress
Match-Action 

Pipeline

Common 
Queuing

and Packet Data 
Buffers

header

Parser Deparser

full packet

header’

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

In terms of structure, 

Tofino basically follows the RMT pipeline
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Parser

26

From MAC

TCAM SRAM

shift control

Match Field selection

next state

next state
Input Shift Register

Match Field Extract

Data

state
Output Field
extract register

Action

P
acket H

eader V
ector

8b

16b

32b

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

The same goes for the design of 

the programmable parser
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Pipeline Organization

28
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Parser 0

Ingress
Parser 
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Packet
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MAC
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ueues And
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Putting everything together

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



Copyright  © 2017 - Barefoot Networks

Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

What Happens Inside?

Match Table 
(SRAM or TCAM)

Cross 
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Match Table 
(SRAM or TCAM)

Cross 
Bar
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action
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(Pkt Hdr Vector)
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action
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action
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(Pkt Hdr Vector)

Match Table 
(SRAM or TCAM)

Cross 
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PHV’

action

PHV
(Pkt Hdr Vector)

Match Table 
(SRAM or TCAM)

Cross 
Bar

PHV’

action

PHV
(Pkt Hdr Vector)

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017

Each match action stage is regularly structured around:  

crossbars, memory units, and ALUs
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apply {
/* Parallel lookups possible */
subnet_vlan.apply();
mac_vlan.apply();
protocol_vlan.apply()
port_vlan.apply();

/* Resolution in next stage */
resolve_vlan.apply();

}

apply {
if (!subnet_vlan.apply().hit) {

if (!mac_vlan.apply().hit) {
if (!protocol_vlan.apply().hit) {

port_vlan.apply();
}

}
}

}

Parallelism in P4
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• Most P4 programs have inherent 
parallelism

• Others can be executed speculatively
• Switch.p4
◦ ~100 tables and if() statements
◦ ~22 stages divided between ingress and egress
◦Degree of parallelism ~4.5

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017
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How Tofino Supports Parallel Processing

•Multiple tables mean multiple parallel lookups
•All actions from all active tables are combined

31

Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

N lookups M actions

Xkey0 Action

XkeyN Action

Tkey0 Action

TkeyN Action

Exact
Match
Xbar

Packet H
eader Vector

Exact
Table 0

Ternary
Match
Xbar

Exact
Table N

Ternary
Table 0

Ternary
Table N

Action Engine

PH
V’

Match Action Unit

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017
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action ipv4_in_mpls(in bit<20> label1, in bit<20> label2) {
hdr.mpls[0].setValid();
hdr.mpls[0].label = label1;
hdr.mpls[0].exp = 0;
hdr.mpls[0].bos = 0;
hdr_mpls[0].ttl   = 64;

hdr.mpls[1].setValid();
hdr.mpls[1] = { label2, 0, 1, 128 };

if (hdr.vlan_tag.isValid()) {
hdr.vlan_tag.etherType = 0x8847;

} else {
hdr.ethernet.etherType = 0x8847;

}
}

Parallelism in P4

32

• Most actions can be easily 
parallelized
◦ This action can be executed in 

1 cycle
■ Number of parallel operations: 12

• Keep fields in separate 
containers

8-bit
words

8

8

16-bit
words

16

16

32

32

32-bit
words

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017
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How Tofino Supports Parallel Processing

•Multiple tables mean multiple parallel lookups
•All actions from all active tables are combined
• Each PHV container has its own, independent processor
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Match+Action
Stage (Unit)

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

Memory ALU

N lookups M actions
0 1 2 3 4 5 M-3 M-2 M-1 M0
0 1 4 5 M-3 M-1 M1 3

0 2 4 5 M-3 M-13 M-21

2 M-2

M

{ opcode, operands }

Source: Programmable Data Planes at Terabit Speeds, Vladimir Gurevich, 2017



What's next?  

Tofino 2: 12.8 Tbps (7 nm switching ASIC)

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/

https://www.barefootnetworks.com/press-releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-worlds-first-fully-p4-programmable-network-switch-asics/
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target

What cool things 
can we do with it?
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A large set of papers on programmable data planes 

aim at improving performance, esp. load balancing

CONGA [SIGCOMM'14]

HULA [SOSR'16]

DRILL [SIGCOMM'17]

LetFlow [NSDI'17]
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Source: CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,  

Mohammad Alizadeh et al., 2014
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A large set of papers on programmable data planes 

aim at improving performance, esp. load balancing

HULA [SOSR'16]

DRILL [SIGCOMM'17]

LetFlow [NSDI'17]stateless, yet congestion-aware 

load-balancing decision

P4-based data-plane load-balancing 

with better scalability than CONGA

"micro" load balancing,  

packet-by-packet,  
can deal with micro-bursts
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