

D-ITET Prof. Dr. Laurent Vanbever

February 2025

Exam: Advanced Topics in Communication Networks

10 February 2025, 08:30-11:00, Room HIL F 75

- ▶ Write **legibly** your ETH student number (legi number) below on this front page.
- Do not write your name or use a stamp with your name on it.
- ▶ TRIPLE-check that your legi number is correct!
 You will not be graded if you make a mistake when writing your number.
- ▶ Put your legitimation card (legi) on the most accessible corner of your desk.
 Make sure that the side containing your name and student number is visible.
- ▶ Verify that you have received all task sheets (Pages 1–32).
- Do not separate the task sheets. We will collect the exams after you left the room.
- ▶ Write your answers directly on the task sheets.
- ▶ All answers fit within the allocated space—often in much less.
- ▶ If you need more space, use the **extra sheets** at the end of the exam. **Indicate the task** in the corresponding field, and add a "**see Extra Sheet X**" note in the original task space.
- ▶ Read each task completely before you start solving it.
- ▷ Answer in English.
- ▶ Write clearly in blue or black ink (not red) using a pen, not a pencil.
- ▷ Cancel invalid parts of your solutions clearly (e.g., by crossing them out).
- At the end of the exam, **place the exam face up** on the most accessible corner of your desk. Then collect all your belongings and exit the room according to the given instructions.
- ▶ No written material or calculator are allowed.
- ▶ It is not required to score all points to get the best mark.

Student legi nr.:			

Do not write in the table below (used by corrector only):

Task	Points
Advanced routing	/26
Programmable data planes	/15
Network verification	/21
Network measurements	/16
Network security	/8
Transport	/19
Sustainable networking	/15
Total	/120

leave blank

Task 1: Advanced Routing

26 Points

a) Hierarchical routing

(7 Points)

Consider the route reflection topology composed of five routers depicted in Fig. 1. RRA and RRB act as route reflectors, while R1, R2, and R3 are route reflector clients. The dashed lines indicate iBGP sessions, with single-headed arrows indicating client sessions (they point towards the route reflector) and double-headed arrows indicating normal iBGP sessions (e.g., R2 is the client of RRA, while R1 is the client of both RRA and RRB). The network relies upon an IGP whose weights are depicted next to each link.

The router RRA receives an eBGP route r1 for a certain prefix p. This route has local-pref 50 and an AS-PATH length of 2.

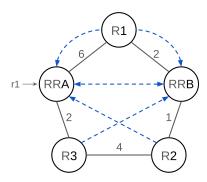


Figure 1: A simple route reflection topology.

- (i) Assuming there were no route reflectors, and instead the network was an iBGP full mesh, how many iBGP sessions would there have been? (1 Point)
- (ii) Now assume RRA and RRB act as route reflectors as described. For every router, identify its chosen egress router and the length of the IGP path towards it (write 0 if the router and the egress router are the same). If there is anything suboptimal or incorrect about the paths, explain it.

 (2 Points)

Router	Egress Router	IGP Weight
R1		
R2		
R3		
RRA		
RRB		

Something sub-optimal?	
0 1	
Something incorrect?	

(iii)	R2 has now also received a route $(r2)$ towards p . It has local-pref 50 and an	AS-PATH
	length of 5. For every router, identify its chosen egress router and the length	of the IGP
	path towards it (write 0 if the router and the egress router are the same).	If there is
	anything suboptimal or incorrect about the paths, explain it.	(2 Points)
		(

Router	Egress Router	IGP Weight
R1		
R2		
R3		
RRA		
RRB		

Something sub-optimal?		
Something incorrect?		
Jointoning meetreet.		

(iv) R1 has now also received a route (r3) towards p. It has local-pref 50 and an AS-PATH length of 2. For every router, identify its chosen egress router and the length of the IGP path towards it (write 0 if the router and the egress router are the same). If there is anything suboptimal or incorrect about the paths, explain it. (2 Points)

Router	Egress Router	IGP Weight
R1		
R2		
R3		
RRA		
RRB		

Something sub-optimal?	
Something incorrect?	
~	

b) Fast(er) convergence

(9 Points)

Consider the network topology composed of six routers depicted in Fig. 2. The values assigned to the edges represent bandwidths.

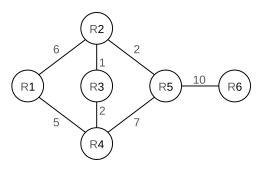


Figure 2: A simple internal topology.

In this task, unless otherwise stated, paths are selected according to the **widest-path** algebra, as seen in the lecture:

$$(\mathbb{R}_0^+ \cup \{\infty\}, \geq, \min, 0).$$

In case of ties, prefer the path with the smallest number of hops.

(i)	Is R4 a per-link Loop-Free Alternate (LFA) for R1 considering the failure of the link (R1
	R2)? Briefly explain. (4 Points

Can you modify the bandwidth of a single link to change whether or not R4 is an LFA? That is:

- If you answered that it is an LFA, can you change a single link's bandwidth such that it no longer is an LFA?
- If you answered that it **is not** an LFA, can you change a single link's bandwidth such that it becomes an LFA?

If a change is possible, identify such a link and the new bandwidth it should have; if no such change is possible, explain why.

_			
_			
_			

Febru	ary 2025	Exam: Advanced Topics in Communication Networks	6
(ii)	_	ginal topology, is R5 a remote LFA for R1 considering the failure of Briefly explain. (2	the link Points)
(iii)	limited: yo them; how you to one	nat you are a router in a random network. Your knowledge of the but know your neighbors and the bandwidths of the links connecting ever, you know nothing beyond that. Suppose that one of the links cone of your neighbors fails: how would you choose a router from your results in order to maximize the likelihood of it being an LFA? Briefly (2)	g you to nnecting maining
(iv)		plain how your previous answer would change if the network used ${f s}$ ing instead of widest path routing.	hortest 1 Point)

c)	Distributed	prefix	filtering	and	aggregation
C,	Distributed	prenx	mitering	anu	aggregation

(10 Points)

tionships: leave blank

Consider the DRAGON algorithm as explained in class, applied to commercial relationships: it guarantees that if a route towards a child prefix q is filtered and aggregated into the route towards the parent prefix p, the new route towards q will have local-pref greater or equal than the previous one, where the local-pref is defined as customer over peer over provider.

We want to design a variation of DRAGON such that the route attribute is formed a tuple (local-pref, AS-path length), sorted first by local-pref and then AS-path length is, we want to guarantee that the new route will have either: (i) a local-pref strugreater than the original one; or (ii) a local-pref equal to the original one and an AS-path length smaller than or equal to the original one.
Either prove or disprove the following: We can extend DRAGON to preserve re
consistency and guarantee optimality according to this new attribute.

Now consider the network topology composed of nine nodes depicted in Fig. 3. A weight is assigned to each edge. Node R5 advertises prefix p and node R8 advertises prefix q. q is a child prefix of p.

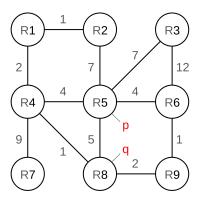


Figure 3: A simple inter-domain topology.

DRAGON can work on different algebras. In the rest of the exercise, consider that the network chooses paths using the **shortest path** algebra.

)	List every router that filters prefix q in Fig. 3. (2 Points)
	A router A filtering a child prefix q will be able to send packets towards q over a path (through the parent prefix p) that A sees as equally cheap or cheaper. However, assuming the weights represent latencies, this does not imply that the packet actually traverses an equally short or shorter path. Draw an example network where the packet ends up taking a longer path after filtering.
	Hint: A 3-node network is enough to show this. (3 Points)

Task 2: Programmable data planes

15 Points

You are provided with a P4 program designed to detect and mitigate potential SYN flood attacks. In this task, you will analyze this program, explain its behavior, and propose enhancements.

The ingress pipeline code of the P4 program is provided below.

```
control MyIngress(inout headers hdr,
                           inout metadata meta,
                           inout standard_metadata_t standard_metadata) {
3
            table ipv4_lpm {
                key = {
                    hdr.ipv4.dstAddr: lpm;
                actions = {
                     ipv4_forward;
10
                    drop;
                }
12
                size = 1024;
13
                default_action = drop();
14
            }
15
            register<br/>bit<16>> syn_count;
            register<br/>other_count;
18
19
            action ipv4_forward(bit<48> dstMac, bit<9> egressPort) {
20
                hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
21
                hdr.ethernet.dstAddr = dstMac;
                hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
23
                standard_metadata.egress_spec = egressPort;
            }
25
26
            action drop() {
                mark_to_drop();
28
            }
30
            action compute_index() {
                bit<16> base = 0;
32
                bit<16> max_size = 65536;
33
                hash(meta.index, HashAlgorithm.crc16, base,
                      { hdr.ipv4.srcAddr },
35
                     max_size);
36
            }
37
38
            action increment_syn_count() {
39
                bit<16> current_syn;
                syn_count.read(current_syn, meta.index);
                syn_count.write(meta.index, current_syn + 1);
42
            }
43
44
```

```
action increment_other_count() {
45
                 bit<16> current_other;
46
                 other_count.read(current_other, meta.index);
47
                 other_count.write(meta.index, current_other + 1);
            }
49
            action check_syn_threshold() {
51
                bit<16> syn_cnt;
52
                 syn_count.read(syn_cnt, meta.index);
                 const bit<16> MAX_SYN_THRESHOLD = 1000;
                 if (syn_cnt > MAX_SYN_THRESHOLD) {
                     meta.suspicious = 1;
56
                 } else {
57
                     meta.suspicious = 0;
58
                 }
59
            }
61
            action syn_block() {
62
                 if (meta.suspicious == 1) {
63
                     mark_to_drop();
64
                 }
            }
66
67
            apply {
68
                 if (hdr.ipv4.isValid()) {
69
                     compute_index();
                     if (hdr.tcp.isValid()) {
                         if (hdr.tcp.SYN == 1 && hdr.tcp.ACK == 0) {
72
                              increment_syn_count();
73
                              check_syn_threshold();
                              syn_block();
75
                         } else {
76
                              increment_other_count();
                         }
78
                     }
79
                     ipv4_lpm.apply();
80
                 }
81
            }
        }
```

Exam: Advanced Topics in Communication Networks

February 2025

12

Task 3: Verification and Routing Algebra

21 Points

a) Inter-AS paths with a special peering agreement

(7 Points)

Consider a modified commercial relationship routing algebra. In addition to provider and customer links (P resp. C), we now distinguish between two levels of peer links: R and Q.

leave blank

Routes received from both Q- and R-peers are exported to customers (through P links) and to Q-Peers. In addition, routes from Q-peers are exported to R-peers if there is no R link on the route yet (any route can traverse at most one R link).

As an example, consider AS0 in the following network. AS0 would export a route originating from AS3 to AS1, but it would not export a route originating from AS4 to AS1.

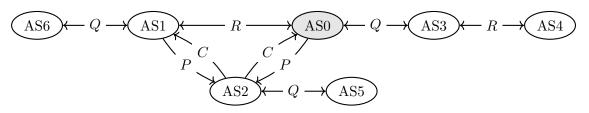


Figure 4: Illustration of attributes added to the route when exporting from arrow tail to arrow head.

- (i) Which ASes (excluding AS6) will receive a route originating at AS6? (2 Points)
- (ii) Fill out the following table describing the extension operation. (3 Points)

route attribute

	\oplus	C	R	Q	P	•
κ	C					
$new\ link$	R					
u	Q					
	P					

(iii) The modified routing algebra uses the following preference relation:

$$C \prec R = Q \prec P \prec \bullet$$

Is this algebra isotone? If so, prove it. Otherwise, provide a counter example.

Recall: a routing algebra is isotone if $\forall X, Y, Z \in A$:

$$X \preceq Y \Rightarrow Z \oplus X \preceq Z \oplus Y$$

(2 Points)

b) From verification to routing algebra

(14 Points)

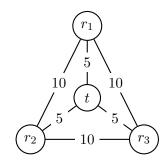
You are an operator of a network G = (V, E) that should route traffic according to the widest path routing algebra, as seen in the lecture:

$$(\mathbb{R}_0^+ \cup \{\infty\}, \geq, \min, 0).$$

Your goal is to build a verifier comprised of a set of symbolic variables and logical expressions that correctly models widest-path routing. To that end, you come up with the following fixed-point equation for a destination t:

$$\forall v, u \in V : \begin{cases} Attr(v) = \min(w(v, u), Attr(u)) & \text{if } From(v) = u \\ Attr(v) \ge \min(w(v, u), Attr(u)) & \text{otherwise} \end{cases}$$
 (1)

where:


- $Attr: V \to \mathbb{R}_0^+ \cup \{\infty\}$ return the preferred attribute of any node $v \in V$.
- From: $V \to V$ describes the neighbor from which a node selects its route.

Additionally, $w: V \times V \to \mathbb{R}_0^+ \cup \{\infty\}$ maps any pair of nodes to a width. If there is no link between two nodes (i.e. $(v, u) \notin E$), then w(v, u) = 0, and any node $v \in V$ can reach itself with infinite width, i.e., $w(v, v) = \infty$.

i)	In the symbolic model of BGP presented in the lecture, we used a variable Available to encode whether a node actually knows a route or not. The equation above, however does not include such a term. Explain why this variable is not necessary in our case or
	for any other routing algebra? (2 Points)
)	Observe that Eq. (1) is trivially satisfied if all routers select themselves i.e., if $From(v) = v$ and $Attr(v) = \infty$ for all $v \in V$. Write (a set of) additional equation(s) that prevent this trivial solution. (2 Points)

(iii) Equation 1 may not yield a *stable routing*. For the following network, find an assignments of the symbolic maps Attr and From that could not be the stable result of any path vector routing protocol, while satisfying Eq. (1) and your solution from task (ii).

(3 Points)

$$Attr(r_1) = \underline{\qquad} From(r_1) = \underline{\qquad}$$

$$Attr(r_2) = \underline{\hspace{1cm}} From(r_2) = \underline{\hspace{1cm}}$$

$$Attr(r_3) = \underline{\hspace{1cm}} From(r_3) = \underline{\hspace{1cm}}$$

$$Attr(t) = \underline{\hspace{1cm}} From(t) = \underline{\hspace{1cm}}$$

(iv) Let us introduce a symbolic map $PathLen: V \mapsto \{0, 1, ..., |V|\}$ to keep track of the length of the learned paths. Use PathLen to write equations that, combined with Eq. (1) and your solution to task (ii), ensure any solution is a *stable routing*. Note that path selection should still be done according to the path widths, not their lengths. In addition, explain why this addition avoids the issue identified in task (iii). (4 Points)

Equations:			
1			

Explanation:			
-			

- (v) From the lecture, we know that monotonicity implies the existence of stable routing. Further, any stable routing is a solution to the fixed-point equations. However, as you have seen in task (iii), monotonicity does not ensure that *all* solutions to the fixed-point equations are stable routings. Can you describe a property of routing algebra that ensures all solutions to the fixed-point equations are also stable routings? (3 Points)

Task 4: Network measurements

leave blank

a) Topology inference

(6 Points)

In this task, you will analyze a network topology consisting of nine ASes. Your goal is to deduce the business relationships among the ASes – whether they are provider-customer (p2c), customer-provider (c2p), or peer-peer (p2p) – and then answer follow-up questions based on these inferences. The ASes in the topology strictly adhere to the Gao-Rexford principles.

You are given some initial links, as shown in the topology. Note that AS 1, AS 2, and AS 3 form the clique and *do not have any providers*. Additionally, the table below lists a set of BGP paths observed by various vantage points at the end of the BGP convergence process.

Important: In this question you should not use ASRank.

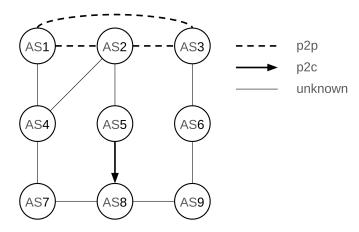


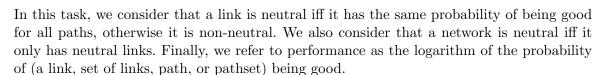
Figure 5: An interdomain topology of 9 ASes.

Vantage Point	Origin AS	Path
AS 4	AS 5	AS 4, AS 2, AS 5
AS 7	AS 5	AS 7, AS 4, AS 2, AS 5
AS 6	AS 5	AS 6, AS 3, AS 2, AS 5
AS 1	AS 8	AS 1, AS 4, AS 7, AS 8
AS 7	AS 9	AS 7, AS 8, AS 9
AS 6	AS 9	AS 6, AS 9
AS 7	AS 3	AS 7, AS 4, AS 1, AS 3

Table 1: BGP paths as observed by various vantage points

(i) Based on the provided paths, classify each edge in the topology in a manner that satisfies the Gao-Rexford conditions for all listed paths. If you cannot "definitively" determine an edge's relationship, classify it as p2p. Write your solutions in the table below (you may draw on the graph, but only the answers in the table will be graded). (3 Points)

Link	p2p	p2c	c2p
AS 1 - AS 4			
AS 2 - AS 4			
AS 2 - AS 5			
AS 3 - AS 6			
AS 4 - AS 7			
AS 6 - AS 9			
AS 7 - AS 8			
AS 8 - AS 9			


- (ii) We refer to hidden links as links whose presence cannot be directly inferred. However, we can sometimes deduce their absence, since their existence would invalidate certain observed paths. Among the three hidden links provided below, one *cannot* exist. Based on the provided paths, identify this impossible link and briefly explain your reasoning.

 (3 Points)
 - AS 1 p2c AS 5
 - AS 2 p2c AS 8
 - \bullet AS 3 p2c AS 9

$\bullet AS \ S - P2C - AS \ 9$							

b) Network tomography

(10 Points)

(i) Reverse-engineering a neutral network from tomography equations

Consider a neutral network with an unknown topology of 8 switches (ids 0-7) and no end-hosts. We assume that independence, stationarity, separability, and stability hold. The (correct) equations that describe the performance of three paths of the network are:

$$\bullet \quad Y_0 = X_{01} + X_{12} + X_{23} + X_{34}$$

$$\bullet Y_1 = X_{23} + X_{34} + X_{02}$$

•
$$Y_2 =$$

$$X_{05} + X_{53} + X_{36} + X_{67}$$

where:

- Y_i indicates the performance of path p_i ;
- X_{ij} indicates the performance of the link from switch i to switch j.

\triangleright	Based on the above equations,	what is	the	minimum	number	of	distinct	links	that
	exist in this network?							(1 P	oint)

\triangleright	Can the network	have other	links that	do not	appear i	in the above	equations?	Briefly
	explain.						(1	Point)

\triangleright	Indicate the minimal se	et of switches of	on which v	we need to d	leploy monitoring	; code to
	estimate Y_0 , Y_1 , and Y_2				(1 Point)

(ii) Identifying non-neutral links in a datacenter-like topology

Consider the datacenter topology shown in Fig. 6, where:

- circles indicate servers with ids 0-7;
- squares indicate switches with ids 8-14;
- tomography can only measure performance between servers;
- a server i can send traffic to server j only if i < j;
- if server i sends to server j, the traffic follows the **shortest path** (in terms of number of links) from i to j.

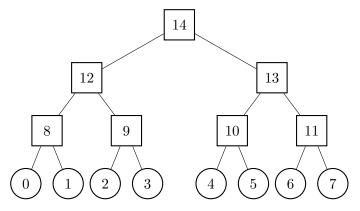


Figure 6: Datacenter-like topology for question (ii).

\triangleright	Can network tomography prove that the link l_{12-14} between switch 12	and switch
	14 is non-neutral? If yes, indicate which of the allowed paths would be	used for the
	tomography equations. If not, explain briefly.	(3 Points)

 \triangleright Consider now an alternate topology in which switch 14 and its adjacent links (l_{12-14} and l_{13-14}) are replaced by a link l_{12-13} between switch 12 and 13. In this topology, three paths are used:

• $p_0: 0 \to 8 \to 12 \to 13 \to 10 \to 4;$

• $p_1: 1 \to 8 \to 12 \to 13 \to 11 \to 6;$

• $p_2: 3 \to 9 \to 12 \to 13 \to 11 \to 6$.

Using network tomography, write the equations to prove that l_{12-13} is non-neutral by filling in the lines below. Y_i indicates the performance of path p_i , and Y_{ij} indicates the performance of path pair p_{ij} . You must:

• leave empty non-used line(s);

• use $X_{i-j,k-m,...}$ to indicate the performance of links $\{l_{i-j},l_{k-m},...\}$, where l_{i-j} (resp. l_{k-m}) is the link between server/switch i and j (resp. k and m). E.g., use $X_{0-8,8-12}$ to indicate the performance of the set of links $\{l_{0-8},l_{8-12}\}$. (4 Points)

$Y_0 = $			
$Y_1 = $			
$Y_{02} = $			
$Y_{12} = $			

Task 5: Network Security

8 Points

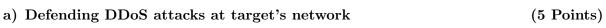


Figure 7 shows ISPs Swizzcom (controlling router R4) and Moonrise (controlling routers R1, R2, R3, and a public DNS server at 100.64.6.65). You are Moonrise's operator.

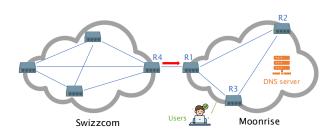


Figure 7: Network setup of two ISPs where Swizzcom is the sole provider of Moonrise.

(1)	belong to NTP servers all over the world and destination ports look random.						
	(2 Poin						
	Affe	cted victim's	s layer:				
	true	false	Network (layer 3)				
	true	false	Transport (layer 4)				
	\Box false Application (layer 7)						
	Atta	ick strategy:					
	$\stackrel{ m true \ false}{\square}$ Spoofed Direct-path						
	\Box rue false \Box Non-spoofed Direct-path						
	true	false	Reflection-amplification				
(ii) Defense. You want to use Remotely Triggered Black Hole (RTBH) to block the traffic while maintaining DNS services for your own users. You've already confistatic route for 192.0.2.1/32 that points to interface Nullo on R1, R2, and also know that R4 has configured a static route for 192.0.2.2/32 that points to Nullo and that Swizzcom's RTBH community is 666.							
	The router(s) you send the BGP message from:						
	The router(s) you send the message to:						
	The BGP message that triggers RTBH: ip route						

b) Defending DDoS with iptables

(3 Points)

(1 Point)

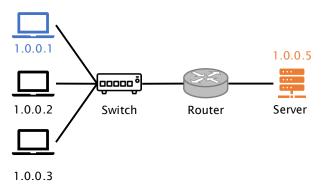
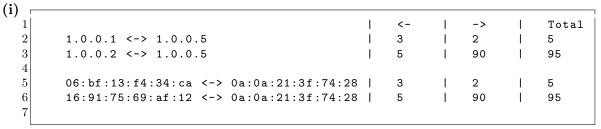



Figure 8: A simple network.

You are the operator of the network shown in Figure 8. Your goal is to ensure the data transmitted between the benign host 1.0.0.1 and the server is not affected by three following DDoS attacks. In each attack, you are provided with the summarized conversations from tshark traces. Write down the [MATCH] field of the iptables rule(s) you need on the router to filter out malicious traffic in each case. The relevant [MATCH] flags are as follows:

- "-s <ip address>": matching the source IP address
- "-d <ip address>": matching the destination IP address
- "-m mac --mac-source <MAC ADDRESS>": matching the MAC source address

Listing 1: IPv4 and Ethernet conversations in Attack 1

-		
-		
-		

```
(ii)
                                                                               Total
   2
         1.0.0.1 <-> 1.0.0.5
                                                     1
                                                         1
                                                                1
                                                                               2
   3
         1.0.0.2 <-> 1.0.0.3
                                                         0
                                                                    43
                                                                               43
   4
         1.0.0.1 <-> 1.0.0.3
                                                         55
                                                                               55
   5
   6
         06:bf:13:f4:34:ca <-> 0a:0a:21:3f:74:28 |
                                                         1
                                                                    1
                                                                               2
   7
         16:91:75:69:af:12 <-> ec:61:68:df:df:10 |
                                                         0
                                                                               43
                                                                    43
   8
         ec:61:68:df:df:10 <-> 06:bf:13:f4:34:ca |
                                                                    55
                                                                               55
```

Listing 2: IPv4 and Ethernet conversations in Attack 2

(1 Point)

```
(iii)
                                                                                Total
    2
          1.0.0.1 <-> 1.0.0.5
                                                          1
                                                                     99
                                                                                100
    3
    4
          06:bf:13:f4:34:ca <-> 0a:0a:21:3f:74:28 |
                                                                                2
                                                                     1
    5
          16:91:75:69:af:12 <-> 0a:0a:21:3f:74:28
                                                                     20
                                                                               20
                                                          0
    6
          ec:61:68:df:df:10 <-> 0a:0a:21:3f:74:28 |
                                                                               78
                                                                     78
```

Listing 3: IPv4 and Ethernet conversations in Attack 3

(1 Point)

February	2025
I CDIUAIV	2023

Exam:	Advanced	Topics	in	Communic	ation	Networks
-------	----------	--------	----	----------	-------	----------

)
leave	blank

	19 Points
$ ilde{V}_{ m arm}$ -up	(8 Points)
What is head-of-line blocking? Why is it a problem in TCP, but no	ot in QUIC. (2 Points)
Why does MPTCP perform a 3-way handshake for each subflow? that shows why this is necessary.	Provide an example (2 Points)
Why is QUIC typically implemented as a userspace library?	(2 Points)
Why does BBR use the bandwidth-delay-product as a target for its and explain one disadvantage of using a smaller or larger rate.	sending rate? Name (2 Points)

Signal 3:_

b) CCA Design Space

(6 Points)

Name three different network signals that are used by existing CCAs to model a network.

leave	blank

Signal 1:_____

Signal 2:_____

Figure 9 shows the trace of an unknown CCA. The figure also shows a packet loss event as a dashed, vertical line. Figure 10 shows the buffer utilization of all routers in the network.

For each signal mentioned above, indicate whether that CCA makes use of it or if it is impossible to say given the data. Justify your answers using evidence from Figures 9 and 10.

You may annotate the plots but **only the answers in the answer fields** on the next page will be graded.

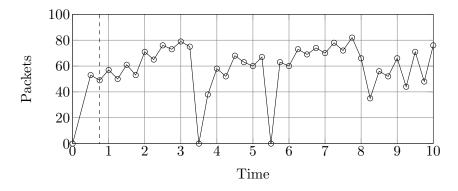


Figure 9: A trace of an unknown CCA

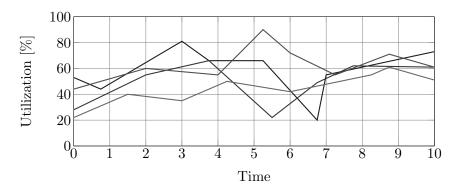


Figure 10: The recorded utilization of 4 buffers in the network

Signal 1: Justification:	true	false	inconclusive	
Signal 2:	true	false	inconclusive	
Justincation:				
Signal 3:	true	false	inconclusive	
Justification:				

Exam: Advanced Topics in Communication Networks

27

February 2025

c) Contention in the public internet

(5 Points)

Consider the network in Figure 11. A and B are hosts connected to each other via R1 and R2, respectively. Beside the traffic between A and B, R1 and R2 also forward traffic from the public internet. This traffic has an unpredictable pattern and always enters the network via X and leaves it via Y

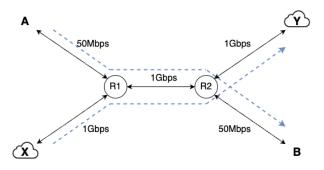


Figure 11: The public internet with A and B connected to it via R1 and R2

Assume host A uploads a large file to host B. With respect to this connection, name a advantage and disadvantage of increasing R1's buffer size for the link to R2. Justify you answer. <i>Note</i> : A and B maintain no open connection to the public internet. (2 Points
With respect to the same upload, is an increase of R2's buffer size beneficial as well Justify your answer. (1 Point
Name one simple strategy that A can do in order to improve performance without changing anything about the network. Explain your answer. (2 Points

Task 7: Sustainable networking

15 Points

In a 2024 Nature's Scientific Reports paper, researchers estimated and compared the carbon footprint of writing a page of text for ChatGPT and humans. For ChatGPT, the researchers accounted for:

- 1.84 gCO2e/query for the energy used for training the model once per month;
- 0.38 gCO2e/query for the energy for inference (i.e., answering the query);
- 0.0001 gCO2e/query for the manufacturing and recycling cost of the hardware used for training the model;
- A scaling factor of 0.6 for the fact that one typical ChatGPT query produces more words than one page of text (250 words).

This results in an estimated footprint of 1.32 gCO2e/page of text produced by ChatGPT.

For the humans, the researchers considered the annual carbon footprint estimated for an entire country and divided by the number of inhabitants and the number of hours in the year to get a footprint per person per hour. This is then multipled by the average time a professional writter takes to produce 250 words (0.86h, or 50min). This results in an estimated footprint of 1426 gCO2e/page of text for a writter located in the USA.

The paper concludes that producing a page of text with ChatGPT is about 1000 times more carbon efficient than if written by a human located in the USA.

	ype of analysis Attributional					
	Top-down		Consequential Bottom-up			
D	Dimensions considered					
	Operational Scope 1		Embodied Scope 2		Scope 3	
Н	Iumans					
T	Type of analysis					
	Attributional Top-down		Consequential Bottom-up			
D	Dimensions considered					
	- F		Embodied Scope 2		Scope 3	
Т	he footprint comparis	on h	etween ChatGPT :	and hi	imans is not fair. Why?	(2 Poin
_	no receptine comparis	011 0	owedi diacar i c	ara rre	illians is not rain. This	(2 1 011

$\mathbf{E}_{\mathbf{X}^1}$	tra	Sh	eet

In case you need more space, use the following pages. Make sure to always indicate the task to which the answer belongs (e.g., $3\ d)\ (ii)$).		
Task:		
T. 1		
Task:		

February 2025	Exam: Advanced Topics in Communication Networks	32
Task:		
		_
		_
Task:		